
A general method for preserving attribute values
on simplified meshes

P. Cignoni�, C. Montaniy, C. Rocchiniz, R. Scopignox

Istituto di Elaborazione dell’Informazione – Consiglio Nazionale delle Ricerche

Abstract

Many sophisticated solutions have been proposed to reduce the ge-
ometric complexity of 3D meshes. A less studied problem is how to
preserve on a simplified mesh the detail (e.g. color, high frequency
shape detail, scalar fields, etc.) which is encoded in the original
mesh. We present a general approach for preserving detail on sim-
plified meshes. The detail (or high frequency information) lost af-
ter simplification is encoded through texture or bump maps. The
original contribution is that preservation is performed after simpli-
fication, by building set of triangular texture patches that are then
packed in a single texture map. Each simplified mesh face is sam-
pled to build the associated triangular texture patch; a new method
for storing this set of texture patches into a standard rectangular
texture is presented and discussed. Our detail preserving approach
makes no assumptions about the simplification process adopted to
reduce mesh complexity and allows highly efficient rendering. The
solution is very general, allowing preservation of any attribute value
defined on the high resolution mesh. We also describe an alternative
application: the conversion of 3D models with 3D static procedural
textures into standard 3D models with 2D textures.
CR Categories and Subject Descriptors:I.3.3 [Computer Graph-
ics]: Picture/Image Generation -Display algorithms; I.3.6 [Com-
puter Graphics]: Methodology and Techniques.
Additional Keywords: surface simplification, detail preservation,
texture mapping.

1 INTRODUCTION

Mesh simplification technology has evolved substantially in the last
few years, and many approaches have been proposed for the con-
trolled simplification of simplicial meshes. A possible schematic
classification subdivides the large number of techniques into:
coplanar facets merging[11, 14],mesh decimation[27, 23, 3],en-
ergy function optimization[13, 12],clustering[24, 7], andwavelet-
based[2]. We cite only a few, representative papers; comprehensive
overviews have been given in two recent papers [9, 21].

Many methods proposed offer no immediate provision for ac-
curately controlling the perceptual effect of degradation, because

�Email: cignoni@iei.pi.cnr.it
yEmail: montani@iei.pi.cnr.it
zEmail: rocchini@calpar.cnuce.cnr.it
xEmail: r.scopigno@cnuce.cnr.it

in many cases the simplification criterion has no immediate inter-
pretation in terms ofvisual degradation[22]. Perceivable visual
degradation may be caused either while visualizing a single sim-
plified representation (e.g. in the case of an excessively simplified
mesh, with loss of topology features and/or fuzziness of the sim-
plified surface), or while changing the level of detail, the so-called
inter-frame flickeringwhich is common if the meshes in an LOD
representation present large visual differences.
Defining a methodology for measuring visual degradation is not
an easy task. Driving simplification by preserving curvature and
sharp edges gives good control on the appearance of the shape, one
reason being that most renderers draw elementary components by
shading colors according to surface normals [22]. However, for
many applications, taking into account only the pure geometric ap-
proximation is not sufficient to ensure that the required accuracy
is fulfilled. Pictorial information (color or texture) is an important
factor in perception, and therefore preservation of color discontinu-
ities has to be managed carefully. Few papers have seriously taken
into account this problem [16, 22, 12, 2, 28, 6, 20], as summarized
in Section 2.
Moreover, pictorial information is probably the most common at-
tribute, but it is not the only one. Another type of mesh attribute
may be the sampling of a field over the mesh vertices (e.g. the
sampled value of physical variables like temperature, potential and
pressure). In order to use these field values in visualization (e.g. by
mapping field values to color, or by computing iso-lines), a simpli-
fication code should take into account the value of the field while
reducing the complexity of the mesh [26, 12].

A new, general approach is proposed in this paper to preserve
attribute information on simplified meshes built on dense, triangu-
lar meshes. The approach we propose is orthogonal to previous
solutions, which take into account attribute values during the sim-
plification process. Conversely, we propose a simple solution for
preserving attribute information after a generic simplification pro-
cess has been run on the input mesh. Attribute preserving can be
seen as a post-processing phase, which may be used in conjunction
with any simplification code. It is performed by assuming that the
simplified meshS has a sufficiently similar shape if compared with
the original high resolution meshM . A sampling process is applied
to the simplified mesh (e.g. each face is scan-converted in object
space) and for each sampling pointpS we find the corresponding
point pM on the original mesh and the original attribute value in
pM . The retrieved attribute values are then stored in a texture map
[10], which we later use to paint the pictorial detail of meshM onto
meshS. All of the texture patches, computed by sampling the faces
of S, are stored efficiently in a single rectangular texture map. The
quality of the texture produced obviously depends on the sampling
resolution adopted and the accuracy in determining the (pS,pM)
pairs.

This approach has a number of advantages. It can be used with
any simplifier, because no assumptions or constraints on the sim-
plification approach are made. It may restore every type of mesh
attribute, given an interpolation rule that allows us to compute the
attribute value on each point of the input mesh (examples on the
restoration of color, other scalar/vectorial fields and high-frequency

surface perturbations are shown in the following). Its complex-
ity depends on the simplified surface area (measured in elemen-
tary sampling point units). Moreover, this approach may also be
used to solve another problem, that is how to convert an object de-
scription which usesprocedural textures[5] into a format that only
supports image-based textures. Finally, analogously to other ap-
proaches based on textures [16, 2, 28, 15], modeling high frequency
detail with texture maps allows highly efficient rendering on mod-
ern graphics subsystems, which generally support hardware texture
mapping.

The paper is organized as follows. Section 2 outlines previous
research in this area. Our approach is described in detail in Sec-
tion 3, while implementation-related aspects and the architecture of
our prototypal implementation are reported in Subsection 3.2. Sec-
tion 4 shows how the proposed approach can be extended to man-
age procedural textures. An evaluation of the results obtained on a
set of sample meshes is presented in Section 5. Finally, conclusions
are drawn in Section 6.

2 PREVIOUS WORK

Only few simplification papers have taken into account the attribute
preservation problem, which is a very critical issue with a direct
impact on the actual use of the meshes produced.

If the pictorial information is defined with a single texture map
and the mesh is simplified using adecimationapproach [27], then
the problem of color preservation is trivial. However, if color is
defined on a per-vertex basis, or through multiple textures, the
problem becomes much more complex, and even worse if we have
multiple attributes. Basically, thedetail-preservingsimplification
methods proposed can be categorized as follows:

1. approaches that take into account attribute discontinuities dur-
ing the simplification process; discontinuities are usually de-
tected by the selection of a discontinuity threshold value, and
the removal or collapse of candidate elements that exceed the
discontinuity threshold is not allowed;

2. approaches which, during simplification, maintain associated
with each current mesh element (e.g. a face) the attribute val-
ues associated to deleted/collapsed elements of the original
mesh section now represented by the current element.

Approaches that follow the first strategy were proposed in [12, 6].
A disadvantage of this strategy is that, because attribute discontinu-
ities prevent element decimation/collapsing, a drastic simplification
of meshes with complex pictorial detail is often impossible.
Color-preserving solution which adopt the second strategy are de-
scribed in [16, 28]. The color/pictorial information defined over the
mesh (e.g. an rgb-color for each vertex of the high resolution mesh)
is preserved during simplification by building a mapping between
the original mesh vertices and the simplified mesh faces. Once the
mesh has been simplified, a texture is built for each face using the
colors of the associated removed vertices. Methods for packing the
simplified face textures in a single texure map have been proposed
[16, 28].

An approach similar to the one proposed in the present paper
adopts B-splines surfaces for concisely representing dense irregu-
lar polygon meshes, and then maps shape detail through displace-
ment maps [15]. For each spline mesh section, a displacement map
represents the error between the fitted surface and the original poly-
gon mesh section. The resulting B-spline surface and the compan-
ion displacement maps can then be processed with standard photo-
realistic rendering systems.

Wavelet decomposition has been widely used for the generation
of simplified or multi-resolution representations. An approach that
follows the first strategy above represents, at multiple resolutions,

both the shape and color ofrange-imagesusing non-orthogonal Ga-
bor wavelets [8]. Unlike other solutions based on the use of wavelet
decomposition, in [8] theshapeand thetextureare considered as the
amplitude and phase of a complex-valued 2D image onto which a
hierarchical decomposition is built.
Wavelets have also been proposed for separate multi-resolution rep-
resentation of geometry and color, which are combined only at dis-
play time [2]. This allows the selection at visualization time of
independent levels of approximation for both geometry and color.
The authors also propose representing color detail through texture-
mapping; textures are built dynamically, with the required resolu-
tion, by painting the color wavelets coefficients on the texture map.

3 PRESERVING DETAIL ON SIMPLIFIED
MESHES

The proposed approach is described here in a general manner. Let
us assume that we are interested in recovering onto the [simplified]
meshS the value of a scalar/vectorial fieldF defined on meshM .
We assume that the field value can be computed for each pointp 2
M by means of a functionf : M � R

3 ! [R j R3]. Function
f can either be a continuous function inR3, or a function defined
piecewise on the cells ofM (e.g. by interpolating a discrete set of
samples ofF evaluated on the vertices of meshM).

Our approach is as follows. The surface of the simplified mesh
S is sampled, and for each elementary surface samplepS we com-
pute the pointpM 2 M at minimal Euclidean distance frompS
(Figure 1). This nearest point is computed efficiently by using a
bucketed data structure for the representation of the meshM (faces
are stored using a uniform grid, and grid cells are processed on
the base of their distance from the sampling pointpS). This ap-
proach generates a point–to–point relationship within surfacesS

andM , and requires no knowledge of the simplification approach
adopted to build the reduced mesh. Surface sampling is achieved
by scan-converting triangular faces under a user-selected sampling
resolution. The sampling resolution characterizes the quality (and
the size) of the texture produced in output.
Given a sampling step, the mesh may contain triangles smaller than
the single squared sampling step. To reduce the aliasing associated
with this case, the user can specify the minimum number of samples
that have to be evaluated for each triangle.

Then, for each pair of corresponding pointspS andpM , the com-
putation performed depends on the particular attribute value we
want to preserve:

� pictorial data, or other scalar/vectorial values: for each sam-
pling point pS we retrieve the scalar/vectorial valuef(pM)
of the associated point on meshM . The value computed by
f can be: the color ofM in pM , either interpolated from the
colors of the vertices of the facef which containspM or inter-
polated on the rgb-texture associated withf ; the interpolated
value of a scalar field defined on the vertices off ; etc.

� data on shape detail: the distance between pointspS andpM
can be used to define either an approximatedbump map[1]
or a displacement-map[4, 10]. The displacement between
the two surfaces is discretized and stored in a 2D scalar ma-
trix (and will be rendered interactively adopting forthcoming
graphics subsystems with hardware bump mapping features
[17]).

For each face, the collection of sampled values is stored in a
triangular texture patch (which may contain either RGB, field, dis-
placement or surface normal perturbation values). The size of this
texture patch directly depends on the sampling step size chosen by
the user and on the size of the triangular face.

Figure 1: Mapping color detail on a simplified mesh by sampling color and constructing an rgb-texture.

The quality of this texture is crucial. Because our approach is an
approximate one, the following problems may arise:

� insufficient sampling rate(blocky textures). This problem de-
pends on the sampling step chosen by the user, which may
be too coarse on particular areas of the mesh. This problem
is evident in the case of surface patches where attribute val-
ues change in a very abrupt manner (e.g. a face painted with a
number of different colored stripes, and where adjacent stripes
show sharp color discontinuity). But this problem cannot be
solved by simply decreasing the sampling step size, because
the size of the texture cannot be enlarged too much (texture
memory available on graphics subsystems is often limited).
Our tool adopts over-sampling to improve texture quality.
Multiple samples are computed for each sampling pointp

(distributed regularly in the small sampling area associated
to p), and the mean of these samples is stored in the texture.
Currently, the over-sampling value is one of the parameters
specified by the user;

� aliasing on the adjacency border between different textured
faces. This problem is related to the fact that, once packed
(see next paragraph), texture patches which are adjacent in
the overall texture map are generally associated with non-
adjacent faces of the mesh. During scan conversion of a mesh
face, discrete texture coordinates might be produced which
are not contained in the associated texture patch (this might
occur frequently while scan-converting the edges of a face,
due to insufficient numerical precision). To prevent erroneous
color mappings due to imprecise computations of texture co-
ordinates , we produce, for each mesh face, a texture patch
which is slightly wider (one texture pixel wider in the discrete

texture space). This give rise to slightly larger texture maps,
but solves the above aliasing problem.

3.1 Packing texture patches in rectangular tex-
tures

The last step of our algorithm is to pack all the triangular texture
patches into a single rectangular 2D texture.
Different approaches are possible to store all of the triangular tex-
ture patches in a single rectangular texture.

A first approach may be based on the use of rectangular texture
patches, which due to they regularity in shape result very simple to
be packed in a rectangular texture [16, 28]. Each texture patch is
generated in [16, 28] by: storing during simplification the color of
the decimated vertices which map onto each simplified mesh face,
and then by interpolating the color information associated with the
removed vertices to build a high resolution triangular texture map.
These techniques use only half-square right triangles, with a further
limitation to square edge of size2i in [28]. The use of only half-
square texture patches means that they can be packed easily with a
simple and regular rule: patches are stored in order of magnitude
(biggest first), equal size patches are paired to form squares, and
squares are stored in adjacent texture areas.

The use of half-squared texture patches allows efficient packing,
but this approach has two disadvantages: only a discrete number of
patch sizes is available and the shape of the texture patch is fixed.
In the case of the sampling-based approach proposed in this paper
for the reconstruction of the texture patches, the first point implies
that we don’t use exactly thesampling steps selected by the user:
given the sampled edgee, we divide it into2k chunks such that the

v1

v2 v3

: texture wasted space

Figure 2: Using half-square texture patches: easy to pack in a rectangular texture, but an uneven sampling is performed.

v1

v2
v3

: texture wasted space

Figure 3: Using irregular texture patches: easy to pack in a rectangular texture, with even sampling.

length(e)

2k
� s �

length(e)

2k+1
. The second limitation implies that the

elementary sampling area is a rectangular area (not squared) in the
mesh space (see Figure 2).
The texture patch therefore only approximately takes into account
the actual size of the associated mesh triangle, and does not con-
sider its actual shape at all. Very thin faces are sampled with very
different sampling steps in two dimensions, and this introduces un-
even sampling. The actual sampling size selected by the user is an
upper bound of the sampling size which is effectively used, since
for very elongated faces we actually use a much finer sampling step
on the shorter edge.

To avoid these disadvantages, we designed a different packing
technique which allows the use ofirregular texture patches. We
maintain the limitation of using only a discrete set of patch heights
(all texture patches have a height equal to2i), but we use the same
sampling step in the two dimensions. Irregular texture triangles
are therefore generated, but because they still have only a discrete
number of different heights, we can store them in a compact man-
ner. The packing strategy is based on the idea ofshearingeach
texture patch along the X axe, in order to reduce the space which is
wasted when we try to pack a patch along the border of the previous
patch in the rectangular texture. The example in Figure 3 shows the
border-line case, where each patch is drastically sheared until his
leftmost edge has inclination identical to the right-most one of the
adjacent patch.
Obviously, considerable shearing introduce aliasing, while the use
of small shearing angles results sufficiently safe in terms of visual
quality. The maximum angle of shearing is one of the parameters of
the system (more we share, less texture space is wasted, but more
aliasing is introduced).

The two approaches have been implemented and evaluated. Pre-
liminary results shows that the second solution gives smaller tex-
tures. If we define the ideal texture size as the mesh surface area
divided by the squared sampling step, then the second solution pro-
duces textures which are on average 15-20% larger than the ideal

size, while the first solution returns textures 250-300% larger than
the ideal one.
Given a maximal texture size (which is a common system-
dependent constraint), the lower the overhead (e.g. the difference
between the ideal and the sampled texture), the better the quality
(because we can increase the sampling rate and obtain a more de-
tailed texture).

An example of the packed textures obtained with the Soucy et
al. approach [28] and our approach is shown in Figure 9 (see color
tables). The example shows the texture map built for a very simpli-
fied model (98 faces) of the fandisk mesh (originally, 12,946 faces).
The sampling step size is in this case 0.25% of the mesh bounding
box diagonal and the size of the texture maps obtained is 780*1024
in the case of the Soucy et al. method, and 659*521 for our method.
The time required is 3.3 sec for initialization, 6. seconds for texture
patches sampling and only 0.1 sec for texture patches packing (in
the case of the slightly more complex irregular patches packing).
Times have been evaluated on an SGI O2, R5000 180MHz.

3.2 Implementation details

This subsection presents some more details on our current prototy-
pal implementation,DePreSS(Detail Preservation onSimplified
Surfaces).
The DePreSSprototype accepts in input meshes formats OpenIn-
ventor, VRML V1.0 or raw (list of vertices plus list of faces). Since
it would have been too expensive to get dynamically the required
color information from the above formats, we convert input data
into an internal format which stores geometrical data and colors
or texture space coordinates associated with each vertex. The data
structure has also been designed to reduce space occupancy, be-
cause we may need to store a very complex original mesh (the one
before simplification) with all the associated attribute values.

Given a sampling pointp on S, the corresponding point on the
original meshM is computed with sufficient efficiency by evalu-

SM

pS

r

f

Figure 4: The rayr passing through the sampling pointps on the
simplified surfaceS and perpendicular to the facef of S does not
pierce any point of the original surfaceM .

atingpoint to facedistances (we used an optimized procedure de-
rived from the source code of the POV ray-tracer [19]). Moreover,
the computation of the minimal distance between pointp and all
the faces ofM is optimized (otherwise, complexity will become
quadratic). We adopted a bucketed representation of the faces of
M . A regular cubic grid is built, covering the bounding box ofM .
Pointers to the faces contained/intersected are stored in each bucket.
For each pointp, we test faces in order of distance fromp, halting
the process as soon as no more buckets closest than the nearest face
exist. The regular grid structure is defined according to the mesh
size (the number of cells is proportional to the number of faces in
the mesh) and to the bounding box edges ratio (we subdivide the
bounding box inton �m � p cubic cells).

In the case of the computation of bump maps, we store in the tex-
ture the signed distance between the two meshes. Thepoint to face
distance evaluated takes into account if the original mesh is above
or below the surface of the simplified mesh. However, these dis-
tances only give an approximation of a real bump/displacement
map, because displacements are generally evaluated on the direc-
tion of the normal to the sampled surface. But computingcorrect
distances along the surface normal directionr is not easy, because
in some cases it might not exist an intersection between the original
meshM and the rayr (see an example in Figure 4), or the near-
est intersection alongr might be on a section of the mesh which is
much further than the section nearest to the sampling pointps.
In our implementation, we return the minimal distance between
meshesM andS (and the line which passes through the corre-
sponding pair of points may not be aligned with the normal inS).
A number of experiments showed that the level of approximation is
sufficiently good (see Figures 6 and 7).

The results are currently being produced by adopting the Open-
Inventor format, storing geometry, texture coordinates, and the tex-
ture image.

4 EXTENSION TO PROCEDURAL TEX-
TURES

Static procedural textures are a very powerful tool for the simula-
tion of the realistic appearance of materials (e.g. marble or wood).
They have been proposed to circumvent the image mapping prob-
lem that characterizes 2D textures [10, 5]. Moreover, 3D textures
are generally obtained by procedural generation, to prevent pro-
hibitive space requirements. The texture function value in every lo-
cation of the 3D space may be computed using either fractal noise
basis functions [18], or functions based on the computation of dis-
tances from a set of random feature points [25].

Procedural textures can easily be mapped onto a free-form ob-
ject, but are generally rendered by adopting a ray-casting approach.
Many applications use procedural textures, and one problem is how
to preserve detail specification when a standard scene description
language (OpenGL, OpenInventor or VRML) based on planar, 2D
textures is adopted, e.g. to ensure efficiency or portability to dis-
tributed environments. An example may be the conversion of a
complicated model created with a commercial tool which supports
procedural 3D textures (e.g. 3DStudio Max) into a format oriented
to interactive CG (such as VRML or OpenGL).

The reconstruction of a standard texture that encodes the inter-
section between a given procedural 3D texture and a surface can
easily be performed with our approach. Sampling the procedu-
ral texture space at rendering time is replaced by an off-line joint
sampling of the given mesh and the texture space. During mesh
sampling we only need to recompute, for each sampling point, the
associated procedural texture value, and then store it in the texture
patch associated with the current face. Patches are then packed as
usual in a rectangular 2D texture map.

5 EXPERIMENTAL RESULTS

The proposed system has been tested on many meshes. We report
here some examples, which are representative in terms of preserv-
ing different attributes. We show two sets of images referring to
color or pictorial datapreservation:

� meshes with color defined on aper-vertexbasis; Figure 9
shows an example, where a CAD-style mesh (fandisk, 12,946
triangular faces) is painted with a number of very thin stripes
(on average one face wide), then simplified, and finally color-
textured; the two texture obtained,packed using the Soucy et
al. and our methods, are shown in Figure 9 (see color tables);

� meshes withtexture-mappedpictorial detail (single or multi-
ple textures); Figure 5 shows an example1.

Examples concerning shape detail preservation are presented in
Figures 6 and 7. Figure 6 shows the original bunny mesh2 on the left
(69,451 faces) and a simplified representation with both enhanced
edges and bump mapping on the right. Figures 7 shows a section
of a mesh which represents a relief drip stone (cornice) from the
facade of the Duomo in Pisa (acquired with a commercial range
scanner). It was simplified drastically (from 70,050 to a few hun-
dreds), and then a bump map, computed with our prototype, was
applied on the simplified model (rightmost image).

An example of coding 3D procedural textures with standard 2D
textures is presented in Figure 8, where a 3D procedural marble-
like texture is attached to a 3D vase, converted into a 2D texture,
and finally rendered with a standard OpenGL viewer.

The optimization techniques adopted guarantee the efficiency of
our approach. Empirical complexity is nearly linear to the surface
area of the simplified mesh, which is measured in squared sampling
step units. This is because the uniform grid adopted to store the
high resolution mesh allows nearly constant times for the detection
of the nearest face to each sampling point. An evaluation of the
empirical time complexity of our approach is reported in Table 1,
where: times are in seconds (SGI O2, R5000 180MHz), sampling
step sizes are measured as percentages of the mesh bounding box
diagonal, and texture sizes are in pixels (texture sizes reported in
the table are only those of the Soucy et al. packing method).

1The puppet mesh (13,045 faces) was produced by Wolf-
gang Niem, Univ. of Hannover (D), http://www.tnt.uni-
hannover.de/project/3dmod/multview/examples.html .

2The bunny mesh was range-scanned at Stanford University and is avail-
able at http://www-graphics.stanford.edu/data/ .

Figure 7: Mapping shape detail: the original mesh on the left (70,050 faces) has been drastically simplified (center image), and then a
displacement texture is mapped on the low resolution mesh (on the right).

sampling step No. samples time texture size

FANDISK (orig.: 12,946 faces, simpl.: 98 faces)
1.000 % 10,827 4.69 23,680
0.500 % 43,456 6.41 82,432
0.250 % 173,985 13.03 308,992
0.125 % 696,066 39.13 1,196,544

BUNNY (orig.: 69,451 faces, simpl.: 501 faces)
1.000 % 11,547 20.09 35,104
0.500 % 46,953 24.94 83,264
0.250 % 188,553 44.97 282,176
0.125 % 754,974 121.07 1,051,776

Table 1: Processing time (in seconds), number of points sampled
on the surface, and size (in pixels) of the texture map produced in
output by our prototypal implementation on two simplified meshes
and different sampling step sizes.

6 CONCLUSIONS

We have presented a general method for preserving on a simpli-
fied mesh the detail (e.g. color, high frequency shape detail, scalar
fields, etc.) which is encoded in the corresponding high resolution
mesh. Our approach is very general, because it allows one to pre-
serve any attribute value defined on the high resolution mesh, and
because it makes no assumptions about the simplification process
adopted to reduce mesh complexity. Detail is encoded through tex-
ture mapping, which is extremely efficient in many graphics subsys-
tems. The texture encoding the detail of the high resolution mesh is
built by an efficient scan conversion process of the simplified mesh.
The results therefore suffer for some approximation: we preserve
surface detail with the use of discrete texture maps, whose qual-
ity depends on both the sampling step size used and the criterion
adopted to locate matching pairs of points on the two surfaces. De-
spite this limit, the results can be considered of sufficiently high
quality for a wide range of possible interactive visualization appli-
cations.
We also propose an alternative application: the conversion of mod-
els with attached 3D procedural textures into standard 2D-textured
models.

As a general point, our approach has to be compared with the
other solutions which take into account high-frequency detail dur-

ing simplification. Reasons for choosing our approach are the fol-
lowing: simplification is de-coupled from preservation, and this
allows the user to choose the more adequate simplification code;
when operated as a post-processing action, the task is generally
more efficient in time and simpler to be implemented (especially if
different kinds of detail have to be preserved); not all simplification
approaches can be simply adapted to preserve the mesh attributes.

Our approach can be extended in several ways.
The precision of the sampling process and texture size depend on
the sampling step selected. The quality of the textures produced
might be improved (and their size reduced) if a semi-automatic
and adaptive selection of the sampling step were adopted. Once
a texture patch has been computed for a given face of the mesh,
this patch could be analysed to detect the degree of uniformity or
smoothness of the detail coded. If the texture patch is nearly uni-
form (e.g. if it corresponds to a constant value section of the mesh)
or smooth, then its resolution could be reduced without losing qual-
ity. Conversely, if the texture has a high discontinuous content, we
could re-sample it using finer sampling , and increase the precision
only locally.

Mip-map representation of textures [29] is widespread, due to
the necessity to reduce aliasing while mapping the texture at differ-
ent scales. The problem solved by the mip-map approach is how
to render faces which map to a large texture patch but, in a current
view, map to only a few pixels. Storing our sampled texture under
a mip-map approach is not straightforward. The problem is how to
compute recursively the associated reduced resolution maps by tak-
ing into account the fact that our global texture is subdivided into
a number of independent triangular patches. This problem will be
the subject of further research.

7 ACKNOWLEDGEMENTS

This work was partially financed by theProgetto Finalizzato Beni
Culturali of the Italian National Research Council (CNR). The re-
lief drip stone from the Duomo in Pisa was scanned in cooperation
with the “Soprintendenza ai Beni A.A.A.S.” of Pisa (Italy).

Figure 5: Preservation of color: the texture-based color of the mesh
on the left is preserved on the simplified mesh on the right.

References
[1] J. F. Blinn. Simulation of wrinkled surfaces.Computer Graphics (SIGGRAPH

’78 Proceedings), 12(3):286–292, August 1978.

[2] A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle. In-
teractive multiresolution surface viewing. InComp. Graph. Proc., Annual Conf.
Series (Siggraph ’96), ACM Press, pages 91–98, Aug. 6-8 1996.

[3] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno. Multiresolution deci-
mation based on global error.The Visual Computer, 13(5):228–246, June 1997.

[4] R. L. Cook. Shade trees.Computer Graphics (SIGGRAPH ’84 Proceedings),
18(3):223–231, July 1984.

[5] David Ebert, Kent Musgrave, Darwyn Peachey, Ken Perlin, and Worley.Tex-
turing and Modeling: A Procedural Approach. Academic Press, October 1994.
ISBN 0-12-228760-6.

[6] K. Frank and U.Lang. Data dependent surface simplification. In D. Bartz, ed-
itor, 9th Eurographics Workshop on Visualization in Scientific Computing (EG
ViSC’98), pages 100–109. Eurographics, 1998.

[7] M. Garland and P.S. Heckbert. Surface simplification using quadric error metrics.
In Comp. Graph. Proc., Annual Conf. Series (Siggraph ’97), ACM Press, pages
209–216, 1997.

[8] M.H. Gross and R. Koch. Visualization of multidimensional shape and texture
features in laser range data using complex-valued gabor wavelets.IEEE Trans.
on Visual. and Comp. Graph., 1(1):44–59, March 1995.

[9] P. Heckbert and M. Garland. Survey of surface simplification algorithms. Tech-
nical report, Carnegie Mellon University - Dept. of Computer Science, 1997. (to
appear).

[10] Paul S. Heckbert. Survey of texture mapping.IEEE Computer Graphics and
Applications, 6(11):56–67, November 1986.

[11] P. Hinker and C. Hansen. Geometric optimization. InIEEE Visualization ’93
Proc., pages 189–195, October 1993.

Figure 6: Mapping shape detail: the originalbunnymesh is on the
left (69,451 faces); a drastically simplified mesh with bump texture
mapping and solid mesh edges is on the right.

[12] H. Hoppe. Progressive meshes. InACM Computer Graphics Proc., Annual
Conference Series, (Siggraph ’96), pages 99–108, 1996.

[13] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. Mesh optimization. InACM Computer Graphics Proc., Annual Con-
ference Series, (Siggraph ’93), pages 19–26, 1993.

[14] A. D. Kalvin and R.H. Taylor. Superfaces: Poligonal mesh simplification with
bounded error.IEEE C.G.&A., 16(3):64–77, 1996.

[15] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces to dense polygon
meshes. InComp. Graph. Proc., Annual Conf. Series (Siggraph ’96), ACM Press,
pages 313–324. ACM Press, 1996.

[16] M. Maruya. Generating texture map from object-surface texture data.Computer
Graphics Forum (Proc. of Eurographics ’95), 14(3):397–405, 1995.

[17] Mark Peercy, John Airey, and Brian Cabral. Efficient bump mapping hardware.
In SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pages
303–306. ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-
896-7.

[18] K. Perlin. An image synthesizer.Computer Graphics, 19(3):287–296, July 1985.

[19] POV-Team. Persistence of vision raytracer 3.0. Publicly available on web:
http://www.povray.org/ , 1996.

[20] K. Pulli, M. Cohen, T. Duchamp, H.Hoppe, L. Shapiro, and W. Stuetzle. View-
based rendering: Visualizing real objects from scanned range and color data. In

Figure 8: Mapping a 3D procedural marble texture using standard
2D textures.

Proceedings of 8th Eurographics Workshop on Rendering (St. Etienne, France),
June 1997.

[21] E. Puppo and R. Scopigno. Simplification, LOD, and Multiresolution - Principles
and Applications. InEUROGRAPHICS’97 Tutorial Notes (ISSN 1017-4656).
Eurographics Association, Aire-la-Ville (CH), 1997 (PS97 TN4).

[22] M. Reddy. Scrooge: Perceptually-driven polygon reduction.Computer Graphics
Forum, 15(4):191–203, 1996.

[23] R. Ronfard and J. Rossignac. Full-range approximation of triangulated polyhe-
dra. Computer Graphics Forum (Eurographics’96 Proc.), 15(3):67–76, 1996.

[24] J. Rossignac and P. Borrel. Multi-resolution 3D approximation for rendering
complex scenes. In B. Falcidieno and T.L. Kunii, editors,Geometric Modeling
in Computer Graphics, pages 455–465. Springer Verlag, 1993.

[25] Worley S. A cellular texture basis function. InComp. Graph. Proc., Annual
Conf. Series (Siggraph ’96), pages 291–294. ACM Press, 1996.

[26] D. Schikore and C. Bajaj. Decimation of 2D scalar data with error control. Tech-
nical Report CSD-TR-95-005, CS Dept., Purdue University, 1995.

[27] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decima-
tion of triangle meshes. In Edwin E. Catmull, editor,ACM Computer Graphics
(SIGGRAPH ’92 Proceedings), volume 26, pages 65–70, July 1992.

[28] Marc Soucy, Guy Godin, and Marc Rioux. A texture-mapping approach for the
compression of colored 3d triangulations.The Visual Computer, (12):503–514,
1996.

[29] L. Williams. Pyramidal parametrics.Computer Graphics (SIGGRAPH ’83 Pro-
ceedings), 17(3):1–11, July 1983.

Figure 9: Mapping color from aper-vertexcolored mesh: the original mesh on the left (12,946 faces) has been simplified (98 faces, top right),
and then the original color info is mapped on the simplified mesh (center right). Texture maps produced with the Soucy method (lower left)
and our method based on the use of irregular texture patches (lower right)

