
Marching Intersections: an Efficient Resampling Algorithm
for Surface Management

C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, R. Scopigno
Istituto di Scienza e Tecnologie dell’Informazione

Consiglio Nazionale delle Ricerche
Loc. San Cataldo, Pisa - Italy

frocchini j cignoni j ganovelli j montani j pingig@iei:pi:cnr:it
r:scopigno@cnuce:pi:cnr:it

Abstract

The paper presents a simple and efficient algorithm for
the removal of small topological inconsistencies and high
frequency details from surface models. The method, called
Marching Intersections (MI), adopts a volumetric approach
and acts as a resampling filter: all the intersection points
between the input model and the lines of a user selected 3D
reference grid are located and then, beginning from these
intersections, an output surface is reconstructed. MI, which
presents good characteristics in terms of efficiency, com-
pactness, and quality of the output models, can be also
used: for the conversion between different representation
schemes; to perform logical operations on geometric mod-
els; for the topological simplification of surfaces; and for
the simplification of huge meshes, i.e. meshes too large to
be allocated in main memory during the simplification pro-
cess. All these aspects are discussed in the paper and timing
and graphic results are presented.

1 Introduction

Thanks to the great diffusion of devices for the acquisi-
tion of the shape of 3D objects and to the constant improve-
ment of the performances (and prices) of graphic cards, the
use of 3D digital freeform geometric models is rapidly in-
creasing in many applications, ranging from the reverse en-
gineering to the authoring of 3D virtual worlds.

In most cases, the 3D models are represented by the de-
scription of their boundary surfaces and these surfaces are
very often represented by means of triangles. When the
number of triangles is high (as, for example, in the case of
automatic acquisition through range scanning) we can have
not only rendering problems, but also problems connected
to the editing and manipulation of the surfaces in order to

remove small imperfections due to the acquisition process
(small holes corresponding to parts of the object unseen by
the input device) or high frequency details often due to ac-
quisition noise.

In this paper we present a resampling filter which trans-
forms a complex surface presenting small topological im-
perfections and/or high frequency details into a new, wa-
tertight, valid triangulated surface in which approximation
error is a user controlled parameter. The filter operates by
firstly transforming the input surface into a new simple rep-
resentation scheme in which only the intersections between
the surface and the lines of a user-selected regular grid are
represented; then a new, approximated boundary model is
reconstructed from these intersections.

For a simpler exposition, we refer our method in the pa-
per by using the terms filter and filtering: it has to be un-
derlined that the algorithm is actually based on a surface re-
sampling approach rather than on a classical vertex smooth-
ing [28].

Our method is called Marching Intersections (MI).
Marching Intersections actually indicates the original algo-
rithm for the surface reconstruction phase and the name
has been clearly borrowed from the well-known March-
ing Cubes (MC) [18] algorithm for the extraction of iso-
surfaces from scalar volume datasets.

MI and its main characteristics (simplicity and speed of
the discretization step, compactness of the representation
per intersections, efficiency of the reconstruction and qual-
ity of the output surfaces) are presented in detail in Sec-
tion 2.

Besides being a simple and efficient surface resampling
filter, MI gives also good results when used in other applica-
tions. The method can be used, for example, for the conver-
sion between different geometric representation schemes,
for the topological simplification of complex models, for
the geometric simplification of huge meshes (i.e. meshes

1

Figure 1. The MI algorithm in a 2D example: (top-left) the curve to be processed and the two data
structures collecting the intersections between the input curve and the vertical (top-center) and
horizontal (top-right) lines of the user selected grid; (bottom-left) based on the horizontal and vertical
intersections, an MC look up table entry code is located for each not empty (virtual) cell; (bottom-
right) the reconstructed curve. It has to be noted that the vertical intersections inside the small
dotted box are collected and then deleted from the algorithm because belonging to the same virtual
cell and this leads to the removal of high frequency details.

too large to be loaded in core memory), for the evaluation of
logical operations between models (carving, sculpting). We
briefly present some of these applications in Section 3 and
show some of the results we got. Moreover, a modified ver-
sion of MI has been used for merging multiple range maps
in 3D scanning applications; a detailed description of this
method has been presented in [23].

Conclusions are outlined in Section 4. We do not provide
an all-inclusive state of the art Section: references to the
related works are distributed on the different applications of
the method.

2 The Marching Intersections Algorithm

As briefly summarized in the Introduction, the method
presented in this paper is a resampling filter for the removal
of small topological anomalies and high frequency details
from a surface. A 2D example of the different steps of
the algorithm is shown in Figure 1: given the curve to be
processed, the user chooses the reference grid which meets
her/his approximation requirements (top-left); all the inter-
sections of the input curve with the horizontal and vertical

lines of the grid are stored in proper data structures (dis-
cretization step); from these structures the redundant in-
tersections are then removed (top-middle and top-right im-
ages in the Figure) and, finally, the output surface is recon-
structed by means of a technique which reminds the MC
algorithm and makes use of the MC’s look up table for the
triangulation of each active (virtual) cell. The details of the
method are given in the following Sections 2.1-2.3.

2.1 Surface Discretization

The discretization step consists in detecting all the inter-
sections between the input surface and the reference grid.
To simplify the computations, all the geometric coordinates
of the input data are immersed in the space of the selected
grid; the goal of this scaling transformation is to have all
the grid lines lying on integer values; this improves the ef-
ficiency of the computations and the management of the in-
tersections between the input meshes and the grid edges.

The discretization of the input mesh occurs on a per-face
basis. For each input triangle, its axis-aligned bounding box
is determined and then three different 2D conversion steps

2

Figure 2. An example of the Removal of two dis-
cordant intersections belonging to the same
virtual cell.

are performed. For each scan conversion step, we compute
the intersections between the triangle and the orthogonal set
of grid lines. This process leads to the construction of the
2D dynamic data structures XY , XZ, and ZY containing
the intersections between all the input faces and the corre-
sponding grid lines (the top-middle and top-right images in
the 2D example of Figure 1).

The entry (i; j) of the 2D pointers data structureXY , for
example, points to the list of intersections between the input
surface and the grid line parallel to the Z axis and passing
through the point [i; j; 0].

Each intersection is represented in the dynamic data
structures by means of the numeric value (ic) of the inter-
section (for the XY data structure, for example, the field
holds the z component of the intersection) and by the sign
(sg) of the observation (if we suppose to walk along the grid
line onto which the intersection has been located, a ”+” sign
means that we are entering the object, a ”-” means we are
leaving it).

At the end of the scan conversion process, each list is
sorted with respect to the intersection value. Sorting en-
sures fast detection of nearby intersections and fast search
for specific intervals. The only geometric operation the in-
tersections undergo is the removal: each pair of consecutive
intersections i1 and i2 which lie on the same cell edge (that
is, bici1c = bici2c) and have discordant signs (sgi1 6= sgi2)
is removed from the structure it belongs to. As shown in
Figure 2, this operation corresponds to a resampling which
implies the removal of high frequency details and has the
effect to get an arrangement of the intersections data struc-
tures in a MC-compliant manner, i.e. in such a way that a
MC-like surface reconstruction algorithm could be success-
fully applied.

Even though the intersection data structures do not ex-
plicitly represent a 3D grid, it is quite easy to reconstruct the
virtual cells of the grid by simply locating the correspond-
ing edges in the XY , XZ, and Y Z data structures. Ar-
ranging the data structures in a MC-compliant way means,
for example, to ensure the existence of no more than one
intersection on each virtual cell edge.

Figure 3. Reconstruction of a virtual cell and
of the corresponding triangular patch per-
formed by the MI method (from left to right,
top to bottom), starting from a signed inter-
section on an edge.

2.2 Surface Reconstruction

The basic idea of the (MI) reconstruction method is very
simple: the reconstruction of a 3D surface is completely
defined if all the signed intersections of the surface with
the lines of a regular grid are known. The main steps of
MI are shown in Figure 3: the reconstruction of the surface
parcel contained in a virtual cell of the reference grid. As
described in the previous Section, the initial scale transfor-
mation performed on the input data allows the nodes of the
grid to lie on integer coordinates (i, j, k, . . .); given a virtual
grid cell it is therefore easy to find the intersections lying on
its edges.

The MC-like classification of the vertices of a virtual cell
can be obtained easily from the analysis of the intersections
existing on its edges. If an edge contains an intersection,
than the classification of its vertices depends on the orien-
tation of the intersection, i.e. the value of the sign field sg

(see Figure 3). For each classified (i.e. interior/exterior)
cell vertex v, the classification of the adjacent vertex v 0 on
an incident edges e is concordant with v if no intersections
exist on e, or discordant if a single intersection exists with
direction compatible with the class of vertex v.

If the intersections configuration along the current cell
edges are MC-compatible, then we return the corresponding
8-bit binary code. This code allows to access the standard
MC look-up table and to reconstruct the encoded triangular
patch. In our algorithm, we use a MC look up table which
solves the problem of the ambiguity in the reconstruction of
the triangular patch internal to a grid cell [19].

Different traversal strategies have been proposed for vis-
iting the cell grid in surface fitting. The classic MC ap-
proach is in general implemented by adopting an iterative

3

slice-based visit of all the cells of the volume. Another so-
lution visits the cells following a propagation approach [15],
tracking the surface from an initial seed cell. This solution
has advantages (e.g. allows to produce output encoded in
triangle strips), but implies the handling of a huge stack for
the addresses of the active cells to be visited (with impact
on space and time efficiency). Moreover, a propagation ap-
proach is more effective if the output surface is ensured to
consist of just one component.

The algorithm we designed performs an iterative visit of
the intersection lists, which presents the efficiency of the
propagation methods because only the active cells are ana-
lyzed and the simplicity of the slice-based MC visit because
a stack to remember the visited cells is not needed. We visit,
in sequence, the three data structures XY , XZ, Y Z; for
each structure, we analyze the entries from left to right and
from bottom to top. We do not have to maintain trace of
the processed cells because we adopt the following visiting
strategy:

� XY data structure: for each intersection of the XY

structure, the four virtual cells sharing the edge the in-
tersection belongs to are analyzed. The cells present-
ing other XY intersections, besides the one under ex-
amination, already considered by the algorithm (i.e. al-
ready analyzed in the left-to-right, bottom-to-top visit
of the structure) are discarded because the internal tri-
angular patch has already been produced. In our im-
plementation, the analysis of the four cells exploits the
coherence of the common cell faces;

� XZ data structure: in an analogous way, for each inter-
section of the XZ structure the four cells sharing the
edge the intersection belongs to are analyzed. Here,
the cells discarded are those presenting already visited
XZ intersections as well as XY intersections;

� Y Z data structure: for each intersection of the Y Z

structure the four corresponding cells are analyzed. We
discard the cells presenting already visited Y Z inter-
sections as well as the XY and XZ intersections.

When the surface fitting process fails on some cells (see
next subsection), MI stores the addresses of these cells in an
auxiliary structure for further processing.

2.3 Locating and Closing Holes

Our resampling filter permits to remove small holes from
the input surfaces. Small surface holes which are com-
pletely contained in the interior of a single grid cell are, by
construction, automatically removed from the output mesh.
If, conversely, the ideal surface patch which fills the hole

is intersected by one or more grid lines, then some not-
canonical cells configurations can be produced in the recon-
struction phase of MI. MI code is designed to detect these
not-canonical cells and to manage them appropriately. All
the virtual cells which contain intersections and have not
been safely reconstructed by MI are considered to cover
part of a hole on the object surface; all the edges of the
triangles generated in neighbor cells which lie onto faces of
the current cell are inserted into an auxiliary edge list which
encodes the boundaries of the holes; these edges are then
analyzed: starting from a seed edge, the boundary of a hole
is reconstructed by simply connecting edges with compati-
ble extremes. The hole is then triangulated by means of a
simple 3D extension of a 2D triangulation algorithm [21].
The only hypothesis is that the boundary of the hole is sim-
ple and not self-intersecting.

2.4 Evaluation

Marching Intersections turned out to be efficient both in
the discretization step (because the location of the intersec-
tions model-grid is computationally cheaper than the com-
putation of the 3D primitive to voxel distances which is typ-
ical of the approaches based on distance volumes) and in
the reconstruction step (the algorithm moves on the inter-
sections and therefore on the active cells of the virtual grid.

The compactness of the method comes from the com-
pactness of the data structures for the representation of the
intersections; the total memory occupancy depends on the
(user driven) quality and resolution of the output rather than
on the size of the input.

In the following Sections we will discuss about the theo-
retical and experimental error MI introduces on the models.

3 Applying the Marching Intersections Algo-
rithm

As stated in the Introduction, we basically propose MI
as a filter for freeform triangulated surfaces. In this Section
we analyze the results obtained in filtering meshes but we
also report some possible applications of the method: the
evaluation of implicit models, the realization of logical op-
erations between3D objects, the topological simplification
of complex models, the geometric simplification of huge
meshes.

3.1 Filtering Surfaces and Removing High Fre-
quency Details

We are not aware of many papers specifically dealing
with the problem of filtering surfaces. For a long time, this

4

Table 1. Results obtained running MI on a set of input models. Times are comprehensive of the I/O
times. I/O times actually represent most of time spent for processing the St. Matthew (more than 90
millions of faces) dataset.

Input Data MI Output
size grid size time

name (# triangles) (# virtual cells) (# triangles) (mm:ss.t)

St. Matthew 90,731,545 �10M 435,844 21:11.0
�1M 89,670 21:01.0
�100K 18,083 21:00.0

Vase 2,104,096 �10M 523,052 0:24.3
�1M 109,912 0:17.5
�100k 22,782 0:16.2

Bunny 69,451 �500k 48,746 0:2.4
�100k 16,187 0:1.9
�10k 3,201 0:1.7

problem has been under-estimated because most of the geo-
metric models originated from CAD systems and these sys-
tems generally contain automatic tools for avoiding anoma-
lies. However, Barequet et al. [2] presented a system, called
RSVP, for repairing the boundary representation of CAD
models. Two types of errors are considered: topological er-
rors (aggregate errors, like zero-volume parts, duplicate or
missing parts, etc.) and geometric errors due to numerical
inaccuracy errors (like cracks or overlaps of geometry). The
output of the system describes clean and consistent two-
manifolds (possibly with boundaries) with derived adjacen-
cies. RSVP is powerful but mainly addressed to CAD mod-
els.

With the large diffusion of devices for the automatic ac-
quisition of the shape of objects, filtering surfaces for re-
moving little inconsistencies or noise is a common need.
With reference to the geometric representation schemes
based on regular grids, a number of different proposals have
been presented, based on the use of octrees or regular grid
to encode distance fields (scalar fields that specify the mini-
mum distance to a shape [7, 10]) or simple grids whose data
values are obtained by filtering and sampling techniques
[14]. However, we do not want to deepen this aspect be-
cause we are not proposing a new representation scheme (in
this sense, for example, distance fields offer a greater com-
pleteness): we propose MI as a simple surface-to-surface
filter based on resampling. In this sense our solution does
not assure, at least from a theoretic point of view, that all the
high frequency details are removed from the input model.

Table 1 reports some of the results we obtained testing
MIon three sample datasets:

� St. Matthew: a model of Michelangelo’s St. Matthew
statue, laser-scanned by Marc Levoy et al., Digital

Michelangelo Project1;

� Vase: a laser-scanned vase, represented by a fairly big
mesh (2,104,096 triangular faces); Figure 7 shows the
filtered meshes;

� Bunny: the Stanford Bunny mesh (35,947 vertices,
69,451 triangular faces), courtesy of the Stanford
Computer Graphics Laboratory2.

Times are comprehensive of the I/O times. We are not
interested here in stressing the ability of our method to per-
form geometric simplification; we want simply underline
the high efficiency of the algorithm (the hardware used for
the experiments was a 350Mhz Pentium2 with 256MB of
main memory), its compactness (no need to explicitly rep-
resent grids or cells), and the high quality of the output sur-
face with respect to the adopted grid (all the vertices of the
output mesh belong to the input surface).

Removing high frequency details introduces an approxi-
mation error in the output surfaces. From a theoretical point
of view the largest error that can be introduced is equal to
the diagonal of the cell of the user selected reference grid.
We compared a number of input models with the corre-
sponding output surfaces by means of the METRO tool [5]:
the average error introduced is � 1=10:000 of the diagonal
of the virtual cell.

3.2 Representation Scheme Conversion and
Boolean Operations

Due to the simplicity and efficiency of the conversion
processes, MI can be used in the conversion of geometric

1http://graphics.stanford.edu/projects/mich/
2http://www-graphics.stanford.edu/

5

inside1 = inside2 = false; // initialize the inside/outside status
last_op = OPRT(inside1,inside2); // evaluate the binary operator on void
i1 = list1.begin(); // i1,i2 are the iterators of the two
i2 = list2.begin(); // intersections lists
while(i1 != list1.end() || i2 != list2.end()) // while not end lists...

{if(i2 == list2.end() || i1->ic < i2->ic) // if intersection i1 is lower than i2
{last_ic = i1->ic;
inside1 = (i1->sg < 0); ++i1; // compute new inside/outside status and

} // go to the next list element
else

{last_ic = i2->ic;
inside2 = (i2->sg < 0); ++i2; // compute new inside/outside status and

} // go to the next list element
op = OPRT(inside1,inside2); // evaluate the current binary operator
if(op != last_op) // if the inside/outside status changes

{list3.push(Insert(last_ic, op?1:-1)); // we insert a new intercept
last_op = op;

}
}

Figure 4. The "C" code for the generic logical operation OPRT between the two models list1 and list2.
ic and sg represent intercept and sign of the generic intersection.

models between different representation schemes: models
represented in a spatial-partitioning or constructive solid ge-
ometric, volumetric or mathematical (parametric) schemes,
formed by just one connected component or more compo-
nents, can all be converted into triangulated surfaces by
adopting MI.

Many papers in the literature faced the problem of
the conversion between different representation schemes.
Kaufman [16], for example, proposed algorithms to convert
surfaces into volumes; Montani and Scopigno [20] dealt
with the conversion between octrees and surfaces. With re-
spect to other techniques, MI presents a wider applicability.
Likewise to the ray tracing technique [13], MI requires only
the definition of a ray intersection function in order to be
used on a generic data representation scheme.

When the representation scheme is implicit (for exam-
ple a CSG model) it needs an explicit evaluation step in the
conversion process, or when boolean operations between
distinct surfaces have to be performed, then MI can be effi-
ciently used. The complex problem of implementing logical
operations between surfaces reduces to simple operations
on intervals.

Figure 4 shows, in ”C” language, the few steps needed
for the generic boolean operator OPRT . In order to per-
form a boolean operation the MI algorithm moves on cou-
ples of corresponding lists (list1 and list2 in the example)
in the representation structures of the two input models.
For each list the intersections are analyzed in geometric or-
der. The resulting intersections (collected in list3) are those
causing a change of state (inside/outside the model) on the
base of the current position and of the boolean operation
performed.

Figure 5 shows the results of some logical operations be-
tween a sphere and a cube. The operations have been per-
formed in the space of the intersections, after the discretiza-

Figure 5. Three simple logical operations be-
tween a Sphere (A) and a Cube (B). A \ B on
the left, A [B in the center, and B �A on the
right.

tion of the two input parametric models.

3.3 Topological Simplification

Most of the papers dealing with object simplification
refers to geometrical simplification. Numerous are the algo-
rithms belonging to this class and many are the approaches
adopted. In-depth and exhaustive surveys of the algorithms
for the reduction of geometric primitives can be found in
[11] or [22]. In this section we restrict ourselves to the anal-
ysis of the algorithms which allow the modification (and re-
duction) of mesh topology.

The algorithm proposed by Schroeder [25] extends a pre-
vious topology preserving solution [27]. The vertices of
the input mesh are first classified according to their local
topology and geometry, and an error is assigned to them.
The vertices are then inserted into a priority queue in which
high priority means small error introduced. The decimation
is performed by eliminating vertices and the incident trian-
gles. With respect to the geometry simplification algorithm,
the re-triangulation is performed by collapsing one edge and
this can imply topology modifications (closing of holes or

6

Figure 6. MI in the topological simplification. Upper row: the simple Temple dataset (first image),
the MI output (second image) and the resulting model simplified by means of QSlim (third image);
the results obtained by running QSlim directly on the Temple dataset (fourth image). Lower row: the
simple Cubes dataset (first image), the MI output (second image) and the resulting model simplified
by means of QSlim (third image); the results obtained by running QSlim directly on the Cubes dataset
(fourth image).

creation of non-manifold parts).
The algorithm by El-Sana and Varshney [9] identifies

and removes holes, protuberances or cavities by means
of �-hulls, a concept very similar to the concept of �-
shapes [8] in the reconstruction of surfaces from unorga-
nized points. The algorithm is used together with a method
(Simplification Envelopes [6]) for the reduction of the geo-
metric primitives.

Rossignac and Borrell [24] use a uniform grid to facili-
tate the clustering of the vertices of the input model. The
vertices belonging to a cell of the grid are combined and
replaced with a new vertex. The topology of the affected
triangles is updated and this implies the elimination of tri-
angles or the updating of their connectivity lists.

As a general statement we can observe that previous
methods are efficient but can return not-valid surfaces and
can present a limited control over the topological reduction.

Andujar et al. [1] propose a method based on the space
decomposition approach. The data structure used is a ver-
sion of the well-known octree and the reconstruction of the
surface is performed by a MC like algorithm. The MC does
not need to compute intersections by means of linear inter-
polations because the discretization step leads to a binary
model. Filters are finally used to smooth the returned sur-
faces and a classic algorithm for geometrical simplification

is applied.
The algorithm proposed by He et al. [14] uses a voxel

model for the discretization of the input model and then ap-
plies a MC like algorithm to reconstruct the surface. The
authors use an adaptive MC in order to get a reduction of
the returned geometric primitives. The value assigned to
each voxel node is the signed distance between the node
and the input surface. Fitting a surface means to extract the
isosurface at threshold zero.

The methods based on a space decomposition approach
generally present a low efficiency, due to the representation
conversion, but ensure a good control over the topology re-
duction rate and the geometric validity of the returned sur-
faces. The space decomposition methods do not work in
an incremental way and this implies that the applications
requiring many levels of detail (LOD), for example interac-
tive rendering or transmission, cannot obtain LODs as par-
tial results of a single simplification process. Apart from the
special cases in which a coarser LOD is obtained by group-
ing together eight adjacent voxels, each LOD requires a new
discretization and surface fitting process.

MI shows some similarities with the algorithm proposed
by He et al. [14]. However, MI makes use of resampling
rather than filtering; it does not assign signed distance val-
ues to the nodes of the grid and the nodes themselves are

7

not explicitly represented. The points computed in the dis-
cretization step belong to the input model and they are the
only vertices of the output surfaces. These characteristics
make our algorithm very attractive and more efficient, more
accurate and more thrifty in the use of memory than the
existing space decomposition methods. MI’s efficiency and
speed justifies its iterative use with different grid sizes when
multiple LODs are required.

However, it has to be noted that MI shares with other
methods based on space decomposition some characteristic
disadvantages: topological features reduction depends on
the size and the placement of the grid in the 3D space with
respect to the input mesh; long and thin objects (a knife
blade, for example) could be undesirably removed.

Two simple examples of the use of MI in the topological
simplification are shown in Figure 6: the two models (Tem-
ple and Cubes, both formed by 16 parallelepipeds/cubes,
192 triangles) have been first simplified by using MI (sec-
ond image of each row) and then geometrically simplified
by means of a public domain geometric simplifier (QS-
lim [12], third image of each row). The direct use of a topol-
ogy not-preserving simplifier on the input dataset could pro-
duce topological errors; see, for example, the results ob-
tained by QSlim when it is applied to the original datasets
(rightmost images in Figure 6).

3.4 Simplifying Huge Meshes

Very large triangle meshes, i.e. meshes composed by
millions of faces, are becoming common in many appli-
cations. Obviously, these complex meshes introduce se-
vere overhead in transmission, rendering, processing and
archival. Mesh simplification and LOD management have
become a mature technology that in most cases can effi-
ciently reduce the above overhead.

Unfortunately, most of the more recent and efficient ge-
ometric simplification tools as, for example, QSlim [12],
VTK [26], and Jade [3], require the whole mesh to be
loaded in main memory (and use also auxiliary data struc-
tures). The RAM size often represents the real bottleneck
of the whole process. Only a few algorithms have been re-
cently proposed which solve this problem by means of an
Out-Of-Core (OOC) approach to geometric simplification.
Among them, Lindstrom [17] proposed an OOC simplifica-
tion approach, based on vertex clustering, which is efficient
in time and space. Cignoni et al. [4] represent the input
meshes by means of a hierarchical octree-like data struc-
ture which allows to maintain the data on external mem-
ory and to load dynamically into main memory only se-
lected sections while preserving data consistency during lo-
cal updates. They adopt a classical edge-collapse approach,
which becomes slightly slower in their OOC implementa-
tion if compared to standard RAM-based implementations.

The hierarchical structure proposed in [4] is a very gen-
eral OOC data representation structure and it easily supports
high quality simplification; the drawback is represented by
the higher execution times and the complex implementation
(at least, if compared to the straightforward implementation
of clustering). On the other hand, the accuracy of the mesh
produced by a clustering approach is very low if compared
with the accuracy of methods based on edge collapse. Run-
ning times of clustering solutions are obviously impressive,
but the quality of the results produced is directly dependent
on the regular sub-sampling operated on the mesh (to reach
a drastic simplification of a 3D scanned mesh the cluster cell
size is generally set much larger than the mean face size).
Moreover, clustering produces meshes with a high number
of complex (i.e. non 2-manifold) vertices, and this can be a
problem in many applications.

When a time-efficient removal of high frequency details
or small features on a huge mesh is requested, then a possi-
ble alternative to the use of standard simplification tools (in
case, OOC-oriented) could be to adopt the MI algorithm.
Analogously to the clustering approach, MI is an on-line
solution (each face is considered only once), has an empir-
ical complexity linear to the mesh size and the cardinality
of the output can be easily controlled by an appropriate siz-
ing of the reference grid. Moreover, the removal operations
over nearby intersections can be directly performed during
the discretization process. Conversely, an important differ-
ence with respect to clustering method is that MI produces
topologically clean, 2-manifold meshes.

Improved results, in term of simplified mesh accuracy,
can be obtained by using the MI algorithm in pipeline with
one of the existing in-core high-quality simplification algo-
rithms. MI can reduce the complexity of a huge mesh down
to the largest size tractable by an in-core simplifier (e.g. a
few million faces), and then the in-core simplifier can re-
duce further the mesh under a more sophisticated control of
geometric accuracy.

Fig. 7 shows three different decimation levels of the Vase
model obtained by adopting three different sizes of the grid
reference cell.

4 Concluding Remarks

A new method, called Marching Intersections, for the re-
moval of small topological anomalies and high frequency
details from 3D surfaces has been presented. MI can be ef-
ficiently used in the conversion between different geomet-
ric schemes for the representation of 3D models and for the
execution of boolean operations between models, for the
topological (as well as geometric) simplification of com-
plex models, and for the geometric simplification of huge
meshes (i.e. meshes too large to be allocated in main mem-
ory).

8

Figure 7. Three decimated levels of the Vase model (originally, 2,104,096 triangles): 523,052, 109,912,
and 22,782 triangles for the left, center, and right image, respectively.

In our opinion, the most relevant aspects of the MI
method can be summarized as follows:

� efficiency: MI locates the intersections between the in-
put model and the lines of the user selected grid, rather
than the distances of the input surfaces from the nodes
of the grid; in the surface reconstruction step, the al-
gorithm moves on the intersections and therefore only
the active cells are visited, without the need to store
the addresses of the already visited cells;

� compactness: though the method adopts a volumetric
approach, the discretized volume is not explicitly rep-
resented; each intersection simply requires a floating
point intercept value (ic) and a bit for the sign (sg);
the memory required is proportional to the number of
output vertices (the topology of the output faces is im-
plicit) and it does not depend on the complexity and
size of the input model.

� quality: all the vertices of the output model belong to
the input surface; though the maximum theoretical er-
ror introduced by the method is equal to the diagonal
of the cell of the user-selected reference grid, our tests
demonstrated that the practical error is � 1=10:000 of
the cell diagonal.

Acknowledgements

We acknowledge the financial support of the Progetto
Finalizzato Beni Culturali of the Italian National Research
Council (CNR).

References

[1] C. Andujar, D. Ayala, and P. Brunet. Validity preserv-
ing simplification of very complex polyhedral mod-
els. In Michael Gervaut, Dieter Schmalstieg, and Axel
Hildebrand, editors, Proceedings of 5TH Eurograph-
ics Workshop on Virtual Environments, pages 1–10.
SpringerVerlag Wien, 1999.

[2] G. Barequet, C.A. Duncan, and S. Kumar. RSVP: A
geometric toolkit for controlled repair of solid mod-
els. IEEE Transactions on Visualization and Com-
puter Graphics, 4(2):162–177, April 1998.

[3] A. Ciampalini, P. Cignoni, C. Montani, and
R. Scopigno. Jade v.2: a Multiresolu-
tion Decimation Tool. Visual Computing
Group, CNR-CNUCE, Pisa (ITALY), URL
http://vcg.iei.pi.cnr.it/enhadecimation.html, 1997.

[4] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno.
External memory management and simplification of
huge meshes. Technical Report B4-02-03, I.E.I. –
C.N.R., Pisa, Italy, Nov 2000.

[5] P. Cignoni, C. Rocchini, and R. Scopigno. Metro:
measuring error on simplified surfaces. Computer
Graphics Forum, 17(2):167–174, June 1998.

[6] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. We-
ber, P. Agarwal, F. Brooks, and W. Wright. Simplifica-
tion envelopes. In Computer Graphics Proc., Annual
Conf. Series (Siggraph ’96), ACM Press, pages 119–
128, Aug. 6-8 1996.

9

[7] B. Curless and M. Levoy. A volumetric method
for building complex models from range images. In
Comp. Graph. Proc., Annual Conf. Series (Siggraph
’96), pages 303–312. ACM Press, 1996.

[8] Herbert Edelsbrunner and Ernst P. Mücke. Three-
Dimensional alpha shapes. ACM Transactions on
Graphics, 13(1):43–72, January 1994. ISSN 0730-
0301.

[9] Jihad El-Sana and Amitabh Varshney. Topology sim-
plification for polygonal virtual environments. IEEE
Transactions on Visualization and Computer Graph-
ics, 4(2):133–144, April 1998.

[10] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R.
Jones. Adaptively Sampled Distance Fields: A gen-
eral representation of shape for computer graphics. In
Computer Graphics Proc., Annual Conf. Series (Sig-
graph ’00), pages 249–254. ACM Press, 2000.

[11] M. Garland. Multiresolution modeling: Survey &
future opportunities. In EUROGRAPHICS’99, State
of the Art Report (STAR). Eurographics Association,
Aire-la-Ville (CH), 1999.

[12] M. Garland and P.S. Heckbert. QSlim v.2 Sim-
plification Software. School of Computer
Sciences, Carnegie Mellon University, URL:
http://www.cs.cmu.edu/g̃arland/quadrics/qslim.html,
1999.

[13] A.S. Glassner. An Introduction to Ray Tracing. Aca-
demic Press, 1989.

[14] T. He, L. Hong, A. Varshney, and S. Wang. Controlled
topology simplification. IEEE Trans. on Visualization
& Computer Graphics, 2(2):171–183, 1996.

[15] C.T. Howie and E.H. Blake. The mesh propagation al-
gorithm for isosurface construction. Computer Graph-
ics Forum (Proc. of Eurographics ’94), 13(3):65–74,
1994.

[16] A. Kaufman. Efficient algorithms of 3d scan-
conversion algorithms of polygons. Computers and
Graphics, 12:213–219, 1988.

[17] P. Lindstrom. Out-of-core simplification of large
polygonal models. In Comp. Graph. Proc., Annual
Conf. Series (Siggraph 2000), ACM Press, pages 259–
262. Addison Wesley, July 22-28 2000.

[18] W. E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm. In
ACM Computer Graphics (SIGGRAPH ’87 Proceed-
ings), volume 21, pages 163–170, 1987.

[19] C. Montani, R. Scateni, and R. Scopigno. A modified
look-up table for implicit disambiguation of Marching
Cubes. The Visual Computer, 10(6):353–355, 1994.

[20] C. Montani and R. Scopigno. Quadtree/octree to
boundary conversion. In J. Arvo, editor, Graphics
Gems II, pages 202–218. Academic Press, 1991.

[21] A. Narkhede and D. Manocha. Fast polygon triangu-
lation based on seidel’s algorithm. In A. W. Paeth,
editor, Graphics Gems V, pages 394–397. Academic
Press, 1995.

[22] E. Puppo and R. Scopigno. Simplification, LOD, and
Multiresolution - Principles and Applications. In EU-
ROGRAPHICS’97 Tutorial Notes (ISSN 1017-4656).
Eurographics Association, Aire-la-Ville (CH), 1997
(PS97 TN4).

[23] C. Rocchini, P. Cignoni, C. Montani, and R. Scopigno.
The Marching Intersections algorithm for merging
range images. Technical Report B4-61-00, I.E.I. -
C.N.R., Pisa, Italy, June 2000.

[24] J. Rossignac and P. Borrel. Multi-resolution 3D ap-
proximation for rendering complex scenes. In B. Fal-
cidieno and T.L. Kunii, editors, Geometric Modeling
in Computer Graphics, pages 455–465. Springer Ver-
lag, 1993.

[25] W. J. Schroeder. A topology modifying progressive
decimation algorithm. In Roni Yagel and Hans Hagen,
editors, IEEE Visualization 9́7, pages 205–212. IEEE,
November 1997.

[26] W.J. Schroeder, K. Martin, and W. Lorensen.
The Visualization Toolkit: an Object Oriented ap-
proach to 3D graphics. Prentice Hall, URL
http://www.kitware.com/vtk.html, 1995.

[27] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen. Dec-
imation of triangle meshes. In Edwin E. Catmull, ed-
itor, ACM Computer Graphics (SIGGRAPH ’92 Pro-
ceedings), volume 26, pages 65–70, July 1992.

[28] J. Vollmer, R. Mencl, and H. Müller. Improved Lapla-
cian smoothing of noisy surface meshes. Computer
Graphics Forum, 18(3):131–138, 1999.

10

