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Abstract

This paper presents a new tool, Metro, designed to compensate for a de�ciency in many simpli�cation

methods proposed in literature. Metro allows one to compare the di�erence between a pair of surfaces
(e.g. a triangulated mesh and its simpli�ed representation) by adopting a surface sampling approach.

It has been designed as a highly general tool, and it does no assuption on the particular approach used

to build the simpli�ed representation. It returns both numerical results (meshes areas and volumes,
maximum and mean error, etc.) and visual results, by coloring the input surface according to the

approximation error.
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1. Introduction

Many applications produce or manage extremely com-
plex surface meshes (e.g. volume rendering, solid mod-
eling, 3D range scanning). Excessive surface complex-
ity causes non interactive rendering, secondary{to{
main memory bottlenecks while managing interactive
visual simulations, or network saturation in 3D dis-
tributed multi-media systems. In spite of the con-
stant increase in processing speed, the performances
required by interactive graphics applications are in
many cases much higher than those granted by cur-
rent technology.
Substantial results have been reported in the last few
years, aimed at reducing surface complexity while as-
suring a good shape approximation 13; 6. The tech-
niques proposed simplify [triangular] meshes either by
merging/collapsing elements or by re-sampling ver-
tices, using di�erent error criteria to measure the �t-
ness of the approximated surfaces. Any level of re-
duction can be obtained with these approaches, on
the condition that a su�ciently coarse approximation
threshold is set (an example is drawn in Figure 1).
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A general comparison of the simpli�cation ap-
proaches is not easy, because the criteria to drive
the simpli�cation process are highly di�erentiated and
there is no common way of measuring error; an at-
tempt has been recently presented 3. In fact, many
simpli�cation approaches do not return measures of
the approximation error introduced while simplifying
the mesh. For example, given the complexity reduction
factor set by the user, some methods try to \optimize"
the shape of the simpli�ed mesh, but they give no mea-
sure on the error introduced 18; 9; 8. Other approaches
let the user de�ne the maximal error that can be in-
troduced in a single simpli�cation step, but return no
global error estimate or bound 17; 7. Some other re-
cent methods adopt a global error estimate 10; 15; 2; 5

or simply ensure the introduced error to be under a
given bound 4. But the �eld of surface simpli�cation
still lacks a formal and universally acknowledged de-
�nition of error, which should involve shape approxi-
mation and hopefully preservation of feature elements
and mesh attributes (e.g. color).

For these reasons, a general tool that would mea-
sure the actual geometric \di�erence" between the
original and the simpli�ed meshes would be strategic
both for researchers, in the design of new simpli�ca-
tion algorithms, and for users, to allow them to com-
pare the results of di�erent simpli�cation approaches
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Figure 1: A mesh simpli�cation example: the original mesh (7,960 triangles) is on the left, a simpli�ed one (179
triangles) is on the right.

on the same mesh and to choose the simpli�cation
method that \best �ts" the target mesh. In fact, even
bounded precision methods 10; 15; 2; 5; 4 behave di�er-
ently on di�erent meshes. They generally ensure the
user that the approximation will not be larger than
a given threshold, but di not give data on the actual
error distribution on the mesh. An example is the fol-
lowing query: are there sections of the mesh which hold
an approximation much better than the given bound?
And, if yes, what is their size and distribution?

Metro has been de�ned as a tool which is general
and simple to implement. It compares numerically two
triangle meshes, which describe the same surface at
di�erent levels of detail (LOD). Metro requires no
knowledge on the simpli�cation approach adopted to
build the reduced mesh.Metro evaluates the di�erence
between two meshes, on the basis of the approximate

distance de�ned in the following section.

2. Terminology

We de�ne here some terms that will be used in the
following section (actually, all the measures evaluated
by Metro follow the de�nitions below).
The approximation error between two meshes may
be de�ned, as follows, as the distance between cor-
responding sections of the meshes. Given a point p

and a surface S; we de�ne the distance e(p; S) as:

e(p; S) = min
p0
2S

d(p; p0)

where d() is the Euclidean distance between two points

in E3. The one-sided distance between two surfaces
S1; S2 is then de�ned as:

E(S1; S2) = max
p2S1

e(p; S2):

Note that this de�nition of distance is not symmetric.
There exist surfaces such that E(S1; S2) 6= E(S2; S1).
A two-sided distance (Hausdor� distance) may be
obtained by taking the maximum of E(S1; S2) and
E(S2; S1).
Given a set of uniformly sampled distances, we de-
note the mean distance Em between two surfaces as
the surface integral of the distance divided by the area
of S1:

Em(S1; S2) =
1

jS1j

Z
S1

e(p; S2)ds

If the surface S1 is orientable we can extend the
de�nition of distance between a point p of S1 and S2

so that, informally speaking, this distance e0 is positive
if the nearest point p0 2 S2 is in the outer space with
respect to S1, and negative otherwise (see Figure 2).
Or, in other words, if Np is the vector normal to S1 in
the sampled point p and p0 2 S2 is the nearest point,
then the sign of our distance measure is the sign of
Np � (p

0 � p).

This de�nition of signed distance is introduced to let
Metro distinguish between positive and negative dis-
tances between two surfaces as follows:

E
+(S1; S2) = max

p2S1

e
0(p; S2)
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Figure 2: Signed distance evaluation; distance is posi-

tive in p1 and negative in p2 (S1 is the sampled curve).

E
�(S1; S2) = j min

p2S1

e
0(p; S2)j

Signed distances are used by Metro to give an inde-
pendent evaluation to the sections of the �rst mesh
which are in the interior or in the exterior space with
respect to the second mesh.

3. The Metro Tool

Metro numerically compares two triangle meshes S1

and S2, which describe the same surface at di�erent
levels of detail. It requires no knowledge of the simpli-
�cation approach adopted to build the reduced mesh.
Metro evaluates the di�erence between the two meshes
on the basis of the approximation error measure de-
�ned in the previous section. It adopts an approximate
approach based on surface sampling and the computa-
tion of point{to{surface distances. The surface of the
�rst mesh (hereafter pivot mesh) is sampled, and for
each elementary surface parcel we compute the dis-
tance to the not{pivot mesh.
The idea is therefore to adopt an integration process
over the surface. Surface sampling is achieved by scan

converting triangular faces under a user-selected sam-
pling resolution. The sampling resolution characterizes
the precision of the integration, and we observed that
in most cases a su�ciently thin sampling step size is
0.1% of the bounding box diagonal.
We also implemented a Montecarlo approach (gener-
ate random k points in the interior of each face, with
the number k of samples proportional to the facet
area), which gave similar results in terms of precision.
Moreover, the adoption of Montecarlo sampling makes
not possible the error visualization via error-texture
mapping, because the latter requires a regular, raster
sampling.

In an early version of our tool (Metro v.1) a ray-
casting approach was adopted to compute point{to{

surface distances. In order to improve performances
and precision we adopted a di�erent approach in the
current release of Metro, v.2. Distances from the sam-
pling point and the non-pivot mesh are now computed
e�ciently by using a bucketed data structure. Uniform
grid (UG) techniques are very e�ective in geometric
computations because in many cases elements which
are far apart generally have little or no e�ect on each
other 1. Local processing can, therefore, highly reduce
empirical complexity for many geometric problems. A
3D uniform grid is used in Metro v.2 as an indexing
scheme for the fast search of the nearest face to the
sampling point. The bounding box of mesh S2 is par-
titioned into cubic cells following a regular pattern.
Then, we store in each cell cijk the list of faces of S2
which intersect cijk. For each sampling point p, �rstly
we compute the distance between p and all the faces
of the non-pivot mesh S2 contained in the same grid
cell of p. Then, adjacent grid cells are processed, in
order of increasing distance from p, until we �nd that
all not tested cells are farther than the current nearest
face.
The distance between p and a single face of S2 is com-
puted using an optimized algorithm contained in the
source code of the POV ray-tracer 12.

The strategy adopted implies that uniqueness of the
nearest point is not ensured. According to the de�ni-
tion in Section 2, we might �nd multiple faces at min-
imal distance from the current sampling point. But, if
we are looking for unsigned approximation error, then
uniqueness is not a problem (because we are interested
only in the value of this distance). Conversely, in the
case of signed approximation error evaluation, having
points at the same distance but holding di�erent sign
forces Metro to operate a random choice (and intro-
duces a potential imprecision).

The worst case computational complexity of Metro
depends on the surface area A(S1) of the pivot mesh
(measured in squared sampling step units) times the
number nf of faces of the non-pivot mesh. The result-
ing complexity is O(A(S1)�nf ). But, if we use an UG,
then we can expect that a much lower number of faces
will be tested to compute the minimal distance for
each sampling point. We measured in a number of runs
that the mean number of faces evaluated for each sam-
pling point is only few tens (as presented in Table 1).
In Table 1 we report also the running times and the
number of samples executed by Metro on three di�er-
ent pairs of meshes. Times are in seconds, measured on
a SGI O2 workstation (R5000 180 Mhz, 96MB RAM).

An option is provided by Metro to compute a sym-
metric evaluation of the maximal error. At the end
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S1 S2 sampling step samples no. tested faces no. time

(faces no.) (faces no.) (per sample) (sec.)

4,001 69,451 0.2 365,307 30.3 29

2,867 28,322 0.1 540,667 29.3 24.7

6,369 67,607 0.1 1,670,420 24.8 89.8

Table 1: Number of sampling points, sampling step size, time and number of faces tested per sample on three
di�erent meshes.

of the sampling process, if the �s option is set, then
Metro switches the pivot and not{pivot meshes and
executes sampling again.

Given a sampling step, the mesh may contain trian-
gles which have an area smaller than the squared sam-
pling step. Metro manages this special case by adopt-
ing a random choice: a random variable is generated,
with the probability of its TRUE value equal to the ra-
tio between the triangle area and the squared sample
area. If the random value is TRUE, a single point{to{
surface distance is computed; otherwise, Metro starts
the scan conversion of the next face.

Metro Input

Metro has a command-line input interface. The op-
tions available are shown, as usual, by typing: metro

-h. The options available are shown in Figure 3.
The data formats accepted in input are either the
OpenInventor 19 format or a raw indexed represen-
tation (a list of vertex coordinates, and a list of trian-
gular faces, de�ned by the three indices to the vertex
list).
The two meshes should have similar shapes (as in mul-
tiple level of detail representation). If the shapes di�er
too much, with the disappearance of signi�cant fea-
tures, the computation of the error might be locally
imprecise. Metro considers excessive the di�erence be-
tween two meshes if their bounding box diagonals dif-
fer in length by more than 10%.
If the surfaces to be compared are not orientable or
multiple-connected, then it would be impossible to dis-
tinguish between positive and negative errors (i.e. if
the low detail mesh passes below or above the high
detail mesh).

Metro Output

Metro returns both numerical and visual evaluations
of surface meshes \likeness" (Figure 5 shows a snap-
shot of its GUI).

The format of the numerical results is reported in
Figure 4. It contains data on input meshes characteris-
tics (topology, size, surface area, mesh volume, feature

edges total length, diagonal of the minimal bound-
ing box, diameter of the minimal bounding sphere);
the mean and maximum distances between meshes
(returned using absolute measures and as a percent-
ages of the diagonal of the mesh bounding box); and
a very rough approximation of the positive, negative
and total volume of the di�erence between the two
meshes (i.e. the total volume Vt is the volume of
(S1 � S2) [ (S2 � S1)).
All the positive/negative measures follows the de�n-
itions in Section 2, and can be computed only if the
input surfaces are orientable and single-connected.

Error is also visualized by coloring the pivot mesh
with respect to the evaluated approximation error.
Two di�erent color mapping modalities are available:

� per-vertexmapping: for each vertex, we compute the
error on each mesh vertex (as the mean of the er-
rors on the incident faces), and assign a color pro-
portional to that error. The faces are then colored
by interpolating vertex colors;

� error-texturemapping: for each face, a rgb-texture is
computed which stores the color-coded errors eval-
uated on each sampling point (mapped on a color
scale).

The error-texture mapping approach gives visual re-
sults which in general are more precise, but whose vi-
sualization depends on the sampling step size used by
Metro. See for example in Figure 6 the di�erent visual
representation of the same mesh zone.
In both cases, a histogram reporting the error distrib-
ution is also visualized on the left of the Metro output
window (Figure 5).

When the error-texturemapping is used, we can also
visualize the error by considering its sign: zero error
maps to green, negative and positive to red and blue
(see Figure 7).

Limited numerical precision management

The error evaluated by Metro may be a�ected by the
limited numerical precision, although double precision
is adopted in numerical computations. An \ad hoc"
management has been provided for a number of dan-
gerous cases, such as nearly coincident vertices, facets
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Usage: Metro file1 file2 [-a# -e# -h -l# -s ] [-r] [-q|v] [-b|bs|t]

file1, file2 : input meshes to be compared;

-a# crease angle setting for feature edges detection and

classification. The angle value "#" is given in degrees,

from 0 (all edges are classified 'feature edge') to 180 degrees.

(it is used to measure the total length of the feature edges);

-b show error using "error-texture" mode (DEFAULT is "per-vertex" mode)

-bs show error using "signed error-texture" mode (green==> error=0);

-e# set the maximal absolute error in the histogram scale and color mapping;

(it is useful to compare visually the results of two different runs of Metro);

-h show the Metro command syntax (and the options available);

-l# select the scan conversion step (value "#": percentage of the mesh bounding box);

-q use "quiet" (i.e. very synthetic) output;

-r use "Montecarlo" sampling (DEFAULT: use scan conversion);

-s compute symmetric maximum distance (double run);

-t set text mode only, do not visualize results under OpenInventor;

-v verbose output.

Example: metro -v meshcomp.iv mesh.iv -l0.5 -a45

Figure 3: Metro input options.

Figure 5: The Metro graphic output window.

with small area, and very elongated triangles.
Another problem may be the computation of the sum
of hundreds of thousands of nearly zero values. To min-
imize rounding errors in the computation of the sum,
we used a fanin algorithm (binary tree structured sum
11).

4. Concluding Remarks

We have introduced a new tool, Metro, to allow sim-
ple comparisons between surfaces. Its main use is in
the evaluation of the error introduced in the simpli�-
cation of surfaces. Metro returns both numerical and
visual evaluations of the meshes' likeness. These mea-
sures are computed using an error de�ned as an ap-
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Figure 6: Di�erent color mapping modality: per-vertex mapping on the left, and error-texture mapping on the
right.

proximation of the surface{to{surface distance. The
error is evaluated by: (1) scan converting the �rst
mesh faces with a user{speci�ed sampling step, and
(2) computing a point{to{surface distance for each
scan{converted point. The tool adopts well known
techniques and can be simply implemented.

We tested with Metro the simpli�ed meshes ob-
tained with some public domain software. In the case
of a bounded precision method, the Simpli�cation En-
velopes 4, we obtained error values very similar to the
threshold set; in general, a slightly lower error is mea-
sured: 0.759 for a mesh simpli�ed under target error
0.77, or 0.0884 for the relative target error 0.0895. But
the added value ofMetro in the case of a bounded error
method is to give the possibility to view the distribu-
tion of the error on the mesh (Figure 5).

An important point to be considered in the eval-
uation of a surface simpli�er is to what extent it
preserves feature edges. The current implementation
of Metro detects feature edges and returns, for each
mesh, their total length. But this may not be su�-
cient: even two meshes with nearly equal total length
of the feature edges might di�er a lot.
Metro could be easily extended to get rid of this lim-
itation. Given two set of feature edges F1 and F2, we
might apply again a sampling approach. For each fea-
ture edge e 2 F1 and each sampling points pi 2 e, let
us evaluate the minimal distance between pi and the
edges in F2. These minimal distances can then be used
to compute the maximum and mean displacements be-
tween the set of feature edges or also the maximum
and mean angles between pairs of corresponding fea-
ture edges.

A limitation of Metro regards the topology changes
that some simpli�cation algorithms can introduce in
the simpli�ed surfaces 5; 14; 16. Metro can only par-
tially cover this issue. It returns the number of con-
nected components of each mesh (and also if they are
orientable and closed), and therefore in many cases we
may detect if a topology change has occurred. But a
more sophisticated approach is needed to detect each
single change of topology and to measure the associ-
ated impact on meshes disparity.
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