
Fast tetrahedron-tetrahedron overlap algorithm

F. Ganovelli, F. Ponchio and C. Rocchini

August 11, 2002

Abstract

We present an algorithm to test two tetrahedra for overlap. The algo-
rithm is based on a dimension reduction technique that allows to apply
the Separating Axis Theorem avoiding part of the computation needed to
perform the Separating Axis Test. Source code is available online.

1 Introduction

The algorithms to test overlap between two convex polyhedra made of few
faces [4] work trying to find a plane that separates the vertices of the two poly-
topes. The Separating Axis Theorem [3, 1, 2] states that if two convex polytopes
a and b do not overlap, then there exists an axis on which their projections do
not overlap and such axis satisfies one of the following:

1. it is orthogonal to a face of one of the two polytopes;

2. it is orthogonal to an edge for each of the two polytopes;

The application of SAT consists of testing if the plane lying on the face of a
polytope separates the two of them. If this is not the case, we should find out if
there is a pair of edges, one for each polytope, such that the projections of the
two polytopes on ēa × ēb do not overlap, where ēa(ēb) is the vector obtained as
the difference between the extremes of the edge ea(eb).

The cost in terms of floating point operations of this procedure over a tetra-
hedron is easily determined as follows:

1. The cost of determining if there is a separating axis orthogonal to a face
is: 18 multiplications, 8 summations, 21 subtractions, and 4 comparisons;

2. The cost of determining if there is a separating axis orthogonal to a pair of
edges is: 30 floating point multiplications, 19 summations, 6 subtractions
and 16 comparisons.

Since the cost of the test 2) is higher and the number of times it must be done is
quadratic on the number of edges, for standard SAT is generally more efficient
to do test 1) first for all faces of one polyhedron, and then do test (2) for all

1

pairs of edges.
The algorithm we present reduces the cost of the test 2) to 2 multiplications,
1 subtraction and 1 comparison, and so allows to change the order in which
tests are performed to optimize the final performance. Source code is available
at the web site listed at the end of this paper. The rest of the paper proceeds
as follows: Section 2 is the core part of the paper and it describes our idea
for a smart implementation of the Separating Axis Test, along with Section 3
that contains the pseudocode of the whole algorithm. Results are reported in
Section 4 and a final discussion in Section 5.

2 Our approach

The main advantage of our approach, referred as GPR algorithm in the follow-
ing, is that it does not involve explicitly testing pairs of edges to find a separat-
ing axis. Instead, reusing some of the quantities computed to find a separating
plane lying on a face, we give a way to discard the possibility that a separating
plane lying on a edge exists, at the small cost of 2 scalar multiplications and 1
summation (i.e. a bidimensional vector product).

The approach is based on the following observation: lets e be an edge, f0, f1

faces containing that edge, p0, p1 half-planes extending those faces,and W be the
resulting wedge (which contains the tetrahedron), then if the other tetrahedron
intersects W there cannot be a separating plane containing e.

The algorithm is based on three kind of tests: Face(i), Edge(f0,f1), and
PointInside() explained below.

Face(i)
This function implements test (1) described in Section 1: it returns true iff the
plane Pi containing the face i is a separating plane (or, equivalently, if the face
normal is a separating axis). Firstly, the normal to the face i pointing outwards
the tetrahedra is computed as the vector product of two vectors oriented like
two edges of the face :

n(i) = e0 × e1

Then each vertex of the other tetrahedron is tested to see if it belongs to the
halfspace hi defined by the plane Pi and the normal ni.

if((coord[i][j] = (n(i) · (bj − a0)) > 0) masks[i] | = 2j

If the test succeeds for all of the four vertices, then the plane Pi is a sep-
arating plane and the function returns true. Note that we store the results of
this test: masks[i] stores in which the side of the plane each vertex of the other
tetrahedron is included (see Figure 1) and coord[i][j] stores the result of the dot
product.

2

Figure 1: The vertices 1 . . . 4 are tested to see if they are contained in the
halfspace hi and the result is stored in masks[i] as a bit

Edge(f0,f1)
This function implements test (2) described in Section 1 returns true iff there
exists a separating plane containing the edge e shared by the faces f0 and f1
of the tetrahedron a.

Figure 2.(a) shows shows the application of the test for the edge e shared
by faces f0 and f1 of tetrahedron a. Lets Pw be a plane orthogonal to e: a
separating plane containing e exists iff there exists a line passing through point
e′ (projection of e on Pw) separating the projections of the two tetrahedra a
and b.

This observation allows us to reduce dimension of the problem by 1, pro-
jecting everything on Pw (see Figure 2.(b)).

We can express points of Pw in a coordinate system centered in e′ with axes
n0 and n1 orthogonal respectively to f0 and f1 (see Figure 2.(c)).

Coordinates of the projection bj
′ of a vertex of b will be (bj · n0, bj · n1) and

we find them conveniently stored in coord[i][j], i = f0, f1 and j = 1 . . . 4.
Furthermore, the values masks[j], j = 1 . . . 4 tell us in which quadrant the ver-
tex bj

′ is.

Now all we need to test is that no point of b′ lies in the quadrant (−,−),
as this will grant the existence of a separating line (and viceversa). It will be
enough to test that no vertex bi lies in (−,−) and that no edge bi

′, bj
′ intersect

(−,−).
Since edges having one or two extremes in (+, +) cannot intersect (−,−), we

3

can use the masks computed in FaceA(f0) and FaceA(f1) to perform a quick
rejection test:

int maskf0 = masks[f0];
int maskf1 = masks[f1];
if((maskf0 | maskf1) != 017) // if there is a vertex of b

return false; // included in (-,-) return false

Next, we exclude vertices in (+,+):

maskf0 & = (maskf0 ^ maskf1); // exclude the vertices in (+,+)
maskf1 & = (maskf0 ^ maskf1);

For the edges having an extreme in (−,+) and the other in (+,−) the test is a
mere bidimensional vector product bi

′ × bj
′ (see Figure 2.(c)).For edge 0 − −1

of b, we test:

if(((masks[f0] && 001) && // the vertex 0 of b is in (-,+)
(mask[f1] & 002)) && // the vertex 1 of b is in (+,-)
(((coord[f0][1] * coord[f1][0]) -
(coord[f0][0] * coord[f1][1]))>0))

// the edge (0,1) crosses (-,-)
return false;

and the other edges of b, 0–2, 0–3, 1–2, 1–3 and 2–3, are tested similarly.

PointInside()
PointInside() returns true if at least a vertex of of b is inside the tetrahedron
a. It is performed after the tests on the faces have computed the values of the
array masks and it consists of the following row:

if(masks[0] | masks[1] | masks[2] | masks[3] ! = 1111) return true;

If the test succeeds than at least a bit is zero in every masks, that means that
the corresponding vertex is inside all of the four halfspaces.

3 Overall algorithm

The algorithm is straightforward:

bool algorithm tet a tet(Tetrahedron A, Tetrahedron B)
{

if (FaceA(0)) then return false

4

(a) (b)

(c)

Figure 2: (a) If the tetrahedra a and b overlap, so do their projections on Pw (b)
the same scene as (a) seen from a point along the w axis; (c) Since b′0 × b′2 > 0,
b′0 → b′2 → O is a left turn and b′0b

′
2 does not intersect the quadrant (-,-).

Conversely, b′0 × b′1 < 0, v′0 → v′1 → O is a right turn and b′0b
′
1 intersects the

quadrant (-,-)

5

if (FaceA(1)) then return false

if (EdgeA(0,1)) then return false

if (FaceA(2)) then return false
if (EdgeA(0,2)) then return false
if (EdgeA(1,2)) then return false

if (FaceA(3)) then return false

if (EdgeA(0,3)) then return false
if (EdgeA(1,3)) then return false
if (EdgeA(2,3)) then return false
if (PointInside()) return true

if (FaceB(0)) then return false
if (FaceB(1)) then return false
if (FaceB(2)) then return false
if (FaceB(3)) then return false
return true

}

Note that the EdgeA(i,j) is performed as soon as FaceA(i) and FaceA(j)
have been performed, so that the values of coords and masks for i and j are
known. Also note that no tests on the edges of the tetrahedron b are done,
because if there existed a separating axis ēa × ēb, then there would exist a
separating plane laying on an edge of a and after the last EdgeA() it is already
known that there cannot be such a plane.
The test PointInside() performs a trivial accept based on already-computed
values, to avoid the remaining computations; it test if at least one of the vertices
of tetrahedron b is inside tetrahedron a and could be omitted with no effect on
the correctness.

4 Results

We compare our algorithm with the standard Separating Axis Test algorithm,
where the tests on the separating axis orthogonal to a pair of edges are left after
the tests on the faces.

The test-bed consists of testing overlap of two tetrahedra randomly gener-
ated. The random generation of a tetrahedron is done by generating its four
vertices in a unit cube. In the first experiment such a cube is the same for both
tetrahedra; in the second the two cubes share a face and in the third one are
far apart. This subdivision is done in order to test our algorithm in different
circumstances: when the tetrahedra overlap, when they do not overlap but are
close to each other and when they are far away. Table 1 reports the results of

6

set 1 set 2 set 3
time GPR 29.1 17.1 13.4
time SAT 101.2 19.4 13.0
#faces GPR 2.41 2.14 1.74
#faces SAT 3.34 2.62 1.75

Table 1: Results: the first two rows report the number of milliseconds to perform
104 overlap tests; the second two rows the average number of face tested. In set
1, the tetrahedra are likely to overlap, in set 2 they are close but on overlapping,
and in set 3 they are far away from each other.

these tests in milliseconds over 104 pairs of tetrahedra to test (Intel Pentium IV
1Ghz). You can see how GPR algorithm is much faster when the two tetrahe-
dra are likely to collide, while its performance is substantially the same as SAT
algorithm in the other conditions. This because if the tetrahedra are far apart,
then the separating plane will (almost) always lay on a face and it will be found
without testing pairs of edges. As a consequence the two algorithms perform
the same operations with the difference that GPR pays the overhead of storing
the result of the tests on the faces. On the contrary, when the tetrahedra are
close to each other, the GPR algorithm tests less faces of SAT, thanks to the
fact that testing for separating planes lying on edges is almost negligible and it
can be done earlier in the algorithm.

5 Discussion

This paper gives a fast overlap test between two tetrahedra. No divisions are
involved and the only errors that can arise are the ones given by scalar products
and subtractions. If the first tetrahedron is flat, i.e. its four vertices lay on a
plane, then it is possible to get a wrong answer. In particular the coordinate
system given by the normals of two faces with opposite orientation is degenerate
and any point on a line perpendicular to the axes is transformed on the same
point in the affine coordinate system (see Figure 3.(a)). The more, all of the
points will be on the same straight line passing through the origin of the affine
coordinate system (see Figure 3.(b)). This means that no meaningful answer is
given in this case.

Finally we stress that the GPR algorithm is mainly based on the dimensional
reduction technique that offers the way to save operations at the price of storing
some more data. The idea we presented can be used as it is with general convex
polygons, as long as the overhead caused by accessing memory to store such
data is not greater than the time saved. This of course depends on the hardware
architecture, so we cannot say a priori the number of faces the polygons must
have in order to be convenient to use our algorithm, but we empirically estimate
such number to be under 10.

7

Web Information

Source code for the GPR algorithm is available at
http://www.acm.org/jgt/papers/GanovelliPonchioRocchini02

(a) (b)

Figure 3: (a) Degenerate case: all of the points project on the same on the affine
coordinates system (b) The projection of any edge in affine coordinate system
pass through the origin.

References

[1] Tomas Akenine-Moller. Fast 3d triangle-box overlap testing. JGT, 2(2):25–
30, 1997.

[2] Van Den Bergen G. Efficient collision detection of complex deformable mod-
els using aabb trees. Journal of Graphics Tools, 2(4):1–13, 1998.

[3] S. Gottschalk, M. Lin, and D. Manocha. OBBTree: A hierarchical structure
for rapid interference detection. Computer Graphics, 30(Annual Conference
Series):171–180, 1996.

[4] Rich Rabbitz. Fast collision detection of moving convex polyhedra. In Paul
Heckbert, editor, Graphics Gems IV, pages 83–109. Academic Press, Boston,
1994.

8

