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Abstract

The techniques for reducing the size of a volume dataset
by preserving both the geometrical/topological shape and
the information encoded in an attached scalar field are
attracting growing interest. Given the framework of incre-
mental 3D mesh simplification based on edge collapse, the
paper proposes an approach for the integrated evaluation
of the error introduced by both the modification of the
domain and the approximation of the field of the original
volume dataset. We present and compare various tech-
niques to evaluate the approximation error or to produce
a sound prediction. A flexible simplification tool has been
implemented, which provides different degree of accuracy
and computational efficiency for the selection of the edge
to be collapsed. Techniques for preventing a geometric or
topological degeneration of the mesh are also presented.

Keywords: Simplicial Complexes, Mesh Simplification,
Volume Visualization, Unstructured Grids

1 Introduction

Many papers have been published over the last few years
concerning the simplification of simplicial complexes. Most
of them concern the simplification of 2D simplicial meshes
embedded in 3D space, hereafter called surfaces. Only a
minor subset are concerned with 3D simplicial decomposi-
tions, hereafter called meshes. In particular, we consider in
this paper the class of irregular volume datasets, either con-
vex or non convex, with scalar field values associated with
the vertices of the tetrahedral cells. Let D = (V,Σ,Φ) be our
dataset where V is a set of n vertices, Σ = {σ1, σ2, . . . , σm}
is a tetrahedralization of m cells with vertices in V , and
Φ = {φ1, φ2, . . . , φm} is a set of functions such that each
function φi is defined over cell σi of Σ. All functions of Φ are
linear interpolants of the scalar field known at the vertices
of V . Given an irregular dataset D, the term simplification
refers to the problem of building an approximate represen-
tation D′ of D with a smaller size, built by choosing a set
of vertices V ′ (usually V ′ ⊂ V ) and a new triangulation Σ′

of V ′ that covers [almost] the same domain. This problem
has some similarities with scattered data interpolation and
thinning techniques [10], but the main problem of these ap-
proaches is that the shape of the data domain is not taken
into account (erroneous interpolation between unconnected
data becomes possible).
Surface/mesh simplification can be driven by two different
objectives: producing a more compact mesh which is suffi-
ciently similar in terms of visual appearance, or to produce
a model which satisfies a given accuracy. In the first case the
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main goal is to reduce visualization time. In the second case,
special emphasis is given to data quality and representation
accuracy; this is often the case for scientific visualization ap-
plications, where the user requires measurable and reliable
data quality.
Our goal is therefore to design and evaluate different tetra-
hedral mesh simplification methods in the framework of sci-
entific visualization applications, with a special commitment
to the quality of the mesh obtained (considering both geom-
etry and the associated scalar field). The approach adopted
lies in the general class of incremental simplification meth-
ods: simplification proceeds through a sequence of local
mesh updates which, at each step, reduces the mesh size
and [monotonically] decreases the approximation precision.
Specifically, we adopt an approach based on iterative edge
collapse. The main contributions of this paper are as follows:

• The geometric/topology correctness of the mesh pro-
duced. Topology and geometry are preserved, and
checks are introduced to prevent possible inconsisten-
cies in the simplified mesh (cell flipping, degeneration,
self-intersections);

• The evaluation of the approximation error. We intro-
duce a characterization of the approximation error, us-
ing two conceptually different classes of domain-error
and field-error, and propose a new approach for the in-
tegrated evaluation of domain-error and field-error;

• Different criteria to predict and evaluate the approxima-
tion error are proposed and compared with the direct
evaluation approach. In particular, we propose an ex-
tension of the quadrics error metric to the case of field
error evaluation on 3D meshes;

• Finally, the computational efficiency of the techniques
proposed is evaluated empirically on sample datasets.

The work takes also into account the constraints intro-
duced when the goal is the construction of a multiresolution
representation of the dataset.

2 Related Works

Many different simplification methods have been developed
for the simplification of surfaces. These methods gener-
ally try to select the smallest set of points approximating
a dataset within a given error. A detailed review of these
algorithm is beyond the scope of this document, and for a
survey on this subject see [12]. Very briefly, we can sum-
marize by saying that effective solutions to the simplifica-
tion problem have often been obtained through incremental
techniques, based on either a refinement strategy (refine a
coarse representation by adding points [11]) or a decimation
(or coarsening) strategy (simplify the dataset by removing
points [21, 17]).



Many of these techniques could be extended to the 3D case,
i.e. to volume data simplification. In the following we review
the specific results regarding tetrahedral meshes. We do not
consider here the many lossless compression solutions that
have appeared in the last few years, because the focus here
is on simplification and multiresolution.

2.1 Refinement Strategies

Hamann and Chen [16] adopted a refinement strategy for
the simplification of tetrahedral convex complexes. Their
method is based on the selection of the most important
points (based on curvature) and their insertion into the
convex hull of the domain of the dataset. When a point
is inserted into the triangulation, local modifications (by
face/edge swapping) are performed in order to minimize a
local approximation error.
Another technique, based on the Delaunay refinement

strategy, was proposed by Cignoni et al. [5]; here the vertex
selection criterion was to choose the point causing the largest
error with respect to the original scalar field. This technique
was successively extended in [6] to the management of non-
convex complexes obtainable by the deformation of convex
domains (e.g. curvilinear grids).
The refinement-based strategy was also used by Grosso

and Greiner [15]. Starting from a coarse triangulation cover-
ing the domain, a hierarchy of approximations of the volume
is created by a sequence of local adaptive mesh refinement
steps. A very similar approach based on selective refinement,
but limited to regular datasets, was presented in [24].
All the techniques based on the refinement strategy share

a common problem: the domain of the dataset has to be
convex (or at least it has to be defined as a warping of a reg-
ular computational grid [6]). The reason lies in the intrinsic
difficulty in fulfilling strict geometric constraints while refin-
ing a mesh (from coarse to fine) and using just the vertices
of the dataset.

2.2 Decimation Strategies

Renze and Oliver in [19] proposed the first 3D mesh decima-
tion algorithm based on vertex removal. Given a tetrahedral
complex Σ, they evaluate the internal vertices of the mesh
for removal, in random order. The re-triangulation of the
hole left by the removal of a vertex v is done by building
the Delaunay triangulation Σv of the vertices adjacent to v,
and searching for, if it exists, a subset of the tetrahedra of
Σv whose (d-1)-faces match the faces of Σ. If such a subset
does not exist the vertex is not removed. The latter con-
dition may very often hold if the original complex is not a
Delaunay one. This method neither measures the approxi-
mation error introduced in the reduced dataset, nor tries to
select the vertex subset in order to minimize the error.
Popovic and Hoppe [18] have extended the Progressive
Meshes (PM) algorithm [17], a surface simplification strat-
egy based on edge-collapse, to the management of generic
simplicial complexes. However, their work is very general,
and it does not consider in detail the impact on the approx-
imation accuracy of a possible scalar field associated with
the mesh. The PM approach has been recently extended by
Staadt and Gross [22]. They introduce various cost functions
to drive the edge-collapsing process and present a technique
to check (and prevent) the occurrence of intersections and
inversions of the tetrahedra involved in a collapse action.
The approach is based on a sequence of tests that guaran-
tees the construction of a robust and consistent progressive

tetrahedralization. A simplification technique based on iter-
ative edge collapsing has also been sketched by Cignoni et
al. in [6].
A technique based on error-prioritized tetrahedra collapse
was proposed by Trotts et al. [23]. Each tetraedron is
weighted based on a predicted increase in the approximation
error that would result after its collapse; tetraedral cell col-
lapse is implemented via three edge collapses. The algorithm
gives an approximate evaluation of the scalar field error in-
troduced at each simplification step (based on the iterative
accumulation of local evaluations, following the approach
proposed by Bajaj et al. for the simplification of 2D surfaces
[3], which gives an overestimation of the actual error). The
mesh degeneration caused by the modification of the (possi-
bly not convex) mesh boundary and the corresponding error
are managed by forcing every edge collapse that involves a
boundary vertex to be performed on the boundary vertex,
and avoiding the collapse of corner vertices. This approach
preserves the boundary in the case of regular datasets, but
cannot be used to decimate the boundary of a dataset with
a more complex domain (e.g. non rectilinear or not convex,
as occurs frequently on irregular datasets).

3 Incremental Simplification via Edge Col-
lapse

We adopt an iterative simplification approach based on edge
collapse: at each iteration, an edge is chosen and collapsed.
The atomic edge collapse action is conceived here as a sim-
ple vertex unification process. Given a maximal1 3-simplicial
complex Σ and an edge e connecting two vertices vs and vd

(the source and destination vertices), we impose that vs be-
comes equal to vd and we consequently modify the complex

2.
This operation causes the edge (vs − vd) to collapse to the
point vd and all the tetrahedra incident on the edge (vs − vd)
to collapse to triangles. Again, these new triangles are uni-
fied with the corresponding identical triangles contained in
Σ.
This simplification process is always limited to a local por-
tion of the complex: the set of simplices incident in vs or vd.
We introduce the following terminology: given a edge col-
lapse e = (vs, vd) we define: D(e) the set of deleted tetrahe-
dra incident in e; M(e) the set of modified tetrahedra, i.e.
those tetrahedra incident in vs but not in vd. Therefore, an
edge collapse step results in some modified and some deleted
tetrahedra. The geometric information is simply updated by
the unification of the vertex coordinates. The topology up-
date is somehow slightly more complex; relations TV, VT,
EV and VE have to be updated after each atomic collapse
action.
The order in which edges are collapsed is critical with re-
spect to the simplified mesh accuracy. The result of the
iterative simplification is a sequence Σ0,Σ1, . . . ,Σi, . . . ,Σn

of complexes [17, 4]. When the goal is the production of a
high quality multiresolution output, the approximation error
should increase slowly and smoothly. Analogously to many
other simplification approaches, we adopt a heap to store
the edges which are to be collapsed. At the beginning, all
the edges are inserted in the heap and sorted with respect

1I.e., a complex which does not contain dangling non-maximal
simplices.

2The position and the field value of the vertex vd can also be
changed, obtaining the so-called interpolatory edge collapse. We
do not adopt this approach because the choice of the vd optimal
location is not easy with most of the error evaluation criteria.



to an estimated error, known in the following sections as the
predicted error (see Section 5). The edges in the heap are
oriented, that is we have both the oriented edges (vj , vi) and
(vi, vj) in the heap, because they identify different collapses.
For each simplification step: the edge e with the lowest error
is extracted from the heap; the collapse of e is tested, check-
ing the topological and geometric consistency of the mesh
after the collapse. If the geo-topological checks are verified,
the following actions are performed:

• the tetrahedra in D(e) are deleted;

• the topology relation TV is updated, i.e. vs is replaced
with vd in all tetrahedra σ ∈ M(e);

• the VT relation is updated on vertex vd: V T (vd) =
V T (vd) ∪ M(e) \ D(e);

• the VE relation is updated by setting V E(vd) =
V E(vd) ∪ V E(vs) \ {(vs, vd)};

• the EV relation is updated by substituting vs with vd

on all the edges in V E(vs);

• a new estimated error is evaluated for all former edges
V E(vs) in the heap.

Otherwise, we reject the edge collapse and continue with the
next edge in the heap.
Consistency checks are evaluated before updating the mesh.
There are two classes of consistency conditions: topological
and geometrical. The first one ensures that the edge collapse
will not change the topological type of our complex. The
second one ensures geometric consistency, i.e. that no self-
intersecting or badly-shaped (e.g. slivery) tetrahedra are
introduced by the edge collapse.

3.1 Topology Preserving Edge Contraction

Given an edge collapse, a set of necessary and sufficient con-
ditions that preserves the topological type of our complex
has recently been proposed in [9]. We adopted this approach
in our simplification system to guarantee the topological cor-
rectness of the simplification process.
Let St(σ) be the set of all the co-faces of σ, i.e. St(σ) =
{τ ∈ Σ | σ is a face of τ}. Let Lk(σ) be the set of all the
faces belonging to St(σ) but not incident on σ (i.e. the set
of all the faces of the co-faces of σ disjoint from σ).
Let Σi be a 3-simplicial complex without boundary, e =
(vs, vd) an edge of the complex, and Σi+1 the complex af-
ter the collapse of edge e. According to [9], the following
statements are equivalent:

1. Lk(vs) ∩ Lk(vd) = Lk(e)

2. Σi,Σi+1 are homeomorphic

It is therefore sufficient to check statement (1) to prove that
statement (2) holds, that is to ensure the topological cor-
rectness of the current simplification step (see Figure 1).
If Σi is a complex with boundary (which is the usual case),

we can go back to the previous case by ideally adding a
dummy vertex w and its cone of simplices to the boundary
(i.e. we add a dummy simplex for each boundary 2-face
of Σi).The insertion of w and the corresponding simplices
allows us to also manage the boundary faces of Σi with the
previous checking rule.

Figure 1: Topology checks: in the example on the left,
the condition Lk(a) ∩ Lk(b) = {x, y} = Lk(ab) indicates
a valid collapse. Conversely, an invalid collapse is detected
in the configuration on the right because Lk(a) ∩ Lk(b) =
{x, y, z, zx} �= Lk(ab).

3.2 Preserving Geometric Consistency

Three possible dangerous situations should be prevented in
the simplification process:

• tetrahedra inversion;

• generation of slivery/bad shaped tetrahedra,

• self-intersection of the mesh boundary.

The first two situations are easy to check. In the first case it
is sufficient to check that each modified tetrahedron in M(e)
preserves the original orientation (the first vertex sees the
other three ones counterclockwise), or in other words the
cell volume does not become negative.
In the second case, we reject every collapse that produces one
or more tetrahedra in M(e) having an aspect ratio smaller
than a given threshold ρ. Note that, in order to allow the
simplification of meshes which contain slivery tetrahedra, it
is useful to allow the collapse of an edge also if the aspect
ratio of modified tetrahedra improves after the collapse.
The detection of self-intersections is the most complex sub-
task, because this is the only case where the effects of an
edge collapse can be non-local. After an edge collapse, some
boundary faces that are topologically non-adjacent but ge-
ometrically close can become self-intersecting. The intrinsic
non-locality of this kind of degeneration makes it difficult to
efficiently and correctly prevent it without using auxiliary
structures. To speedup self-intersection checks (a quadratic
problem in its naive implementation) a uniform grid [1] could
be adopted, to store all the vertices of the current boundary
of the mesh. For each edge collapse (vs,vd) that involves a
boundary edge, we should check whether after the collapse,
all the edges on the boundary incident in vd do not intersect
the mesh boundary. If an intersection is found, the collapse
is aborted and the original state of the mesh before the col-
lapse is restored.

4 Error Characterization and Evaluation

When an atomic simplification action is performed, a new
mesh Σi+1 is generated from Σi with, in general, a higher
approximation error. The approximation error can be de-
scribed by using two measures: the domain error and the
field error.

4.1 Domain Error

The collapse of an edge lying on (or adjacent to) the bound-
ary of the mesh can cause a deformation of the boundary of
the mesh. In other words, Σi and Σi+1 can span different



Figure 2: Every point which is not contained in the complex
is assigned to one or to a group of cells, e.g.: VD(x1) = {σh},
VD(x2) = {σi}, VD(x3) = {σi, σj , σk} VD(x4) = {σk}.

domains. This problem has been ignored in many previ-
ous solutions. A correct measure of the domain error can
be obtained by measuring the symmetric Hausdorff distance
between the boundary surface of the input mesh Σ and the
boundary of each intermediate simplified mesh Σi. A func-
tion for measuring the approximation between two surfaces
can be efficiently implemented [7]. But the overheads be-
come excessive if this function is used to evaluate the ac-
curacy of each simplification step that involves a boundary
vertex.
A more efficient solution can be implemented by deploying
the locality of the simplification action (see Subsection 4.4).

4.2 Field Error

The approximation of the original scalar field defined on Σ
with the under-sampled field defined by the simplified com-
plex Σ′ causes another type of error.
Let D′ = (V ′,Σ′,Φ′) be our approximate representation.
Assuming that the two domains Ω and Ω′ of Σ and Σ′ co-
incide, we can measure the error εf introduced in the repre-
sentation of the original field as follows:

εf (D,D′) = max
x∈Ω

(|Φ(x)− Φ′(x)|)

But measuring only the maximum difference between the
two fields does not give a precise estimation. In fact it can
happen that a very small modification of the shape of a
single tetrahedron with a large field variation cause a very
large error, even if the incorrect volume is almost negligible.
For this reason is also useful to measure the average square
error εq

f over the whole domain of the mesh:

εq
f (D,D′) =

1

|Ω|
∫

Ω

|Φ(x)− Φ′(x)|2 dv

If Ω and Ω′ differ, and this is the case when the simpli-
fication of the boundary of the mesh is allowed, we have to
reciprocally extend the domains Ω′ and Ω to compare Φ′ and
Φ in a common space. The main problem is how to evaluate
the field of the points belonging to Ω but not to Ω′, and
viceversa. A possible solution may be to adopt the following
definition of the field error:

εf (D,D′) = max(ε′f (D,D′), εDf (D,D′), εD
′

f (D,D′))

where:
ε′f (D,D′) = max

x∈ Ω ∩ Ω′
(|Φ(x)− Φ′(x)|)

εDf (D,D′) = max
x∈ Ω\Ω′, σ∈VD′ (x)

(|Φ(x)− φ′
σ(x)|)

εD
′

f (D,D′) = max
x∈ Ω′\Ω, σ∈VD(x)

(|φσ(x)− Φ′(x)|)

where VD(x) is the set of cells of Σ that have the minimum
distance to the point x (see Figure 2). Note that a set of cells
can have the same distance to the same point x (all those
cells incident in a given boundary vertex are associated with
the same external space partition). In Figure 2 we show a
2D example of some VD() sets. There is a strict relation
between this partitioning scheme and the Voronoi Diagram
[2] of the simplicial complex Σ.

4.3 Walking in the Field/Domain Error Space

One important characteristic of a simplification method is
the quality of the multiresolution output produced. The er-
ror increase should be as smooth as possible in order to allow
the maximal flexibility in the extraction of models at differ-
ent resolutions.
Many incremental simplification methods store the esti-
mated approximation errors in a heap. But following our
approach, we have an error pair (field and domain) for each
edge collapse. The corresponding 2D error space (field er-
ror on the X axis, domain error on the Y axis) is shown
in Figure 3. Let us suppose that the user fixes a pair of
thresholds (εmax

f , εmax
d ) for the field and the domain errors.

During the simplification process the error moves on a poly-
line that [hopefully] interconnects the origin with the user-
specified maxima. Suppose that the current mesh has an
error (εd, εf ), shown in Figure 3 with a circled dot. The
other dots in Figure 3 denote the predicted error pairs for
every possible edge-collapse. How do we choose the next
edge to collapse?
Giving priority to edges with either minimal domain errors
or minimal field errors may be a mistake (for example, error
pair a in the figure represents the edge with minimal field
error, but it has a very high domain error; analogously, error
pair b has a minimal domain error but a great field error).
A common approach is to use a weighted sum of different
error estimates, ε = w1ε1 + .. + wkεk [17, 14, 22]. As an
example, a multivariate error cost evaluation was proposed
in [22] in the framework of a tetrahedra mesh simplification
solution based on edge-collapse. This measure is a weighted
sum of three components:

ε = w1εgrad(ei) + w2εvol(ei) + w3εequi(ei)

which evaluate the edge gradient, the change in volume of the
updates mesh section and the average length of the edges af-
fected by the collapse. But a solution based on a weighted
sum has a drawback: coming back to the example in Fig-
ure 3, error pair c might have the best weighed sum but also
an excessively high field error. Therefore, we do not consider
criteria based on weighted sums adequate for the integrated
field and domain error evaluation.
A better solution is defined as follows. Given a normalized
error space with weights wd and wf defined such that:

wdεmax
d = wf εmax

f ,

we can choose the edge e that has the smallest error ε defined
as follows:

ε = min
e∈Heap

( max(wdεd(e), wf εf (e))). (1)



Figure 3: The domain/field error space. During the simpli-
fication process the error walks from the origin towards a
user-specified maximal error point.

This strategy can be intuitively interpreted as choosing at
each step the first error pair (e.g. point d in Figure 3) that
is enclosed by a square which grows along the line joining
the origin of the error space with point (εmax

d , εmax
f ).

The same approach can obviously be extended to treat the
case of error evaluation functions which consider k variables.
When we want to produce (and use) a multiresolution model,
it is also useful if both errors can be identified using a single
value. In this case, it should exist a precise relation between
this value and the real field and warping errors.

4.4 Efficient Error Evaluation

A tool for the correct evaluation of the accuracy of a simpli-
fied mesh, taking into account the field and domain errors,
has been developed [8] following an approach similar to the
one used for the evaluation of surface simplification solutions
[7]. It applies Montecarlo sampling on the domains of the
original and simplified meshes, evaluating on each sample
the relative field difference. The Hausdorff distance between
the two domains is evaluated by the same technique of [7].
However, due to performance reasons, this approach can only
be applied as a post-processing step to evaluate post-mortem
the quality of the simplified mesh. Conversely, the following
subsections introduce two evaluation rules that are simple
enough to be used during the simplification process.

Efficient Field Error The computation of the field error can
be simplified by evaluating the difference between the two
scalar fields only on the vertices of the original complex:

ε∗f (D,D′) = max
x∈V

(|F(x)−F ′(x)|)

To easily compute ε∗ during the simplification process, we
need to maintain for each tetrahedron σ ∈ Σ′ a correspond-
ing subset of deleted points {vi} such that: vi lies inside σ,
or vi is associated with σ in the sense of Subsection 4.2 (see
the definition of the VD(x) set). A similar approximation
has already been used in [6], and has been extended here

by taking into account the removed vertices which are ex-
ternal to Ω′. After each collapse the vertices associated to
the modified tetrahedra are redistribute according the local
modifications in order to maintain the ε∗ error.
To improve the accuracy of the estimation of the εf error

we add a small number of random samples inside each tetra-
hedron of the original mesh, and evaluate the field difference
also on these samples. To limit the time and memory over-
head introduced by this technique we have found that it is
convenient to add points proportionally to the field variation
of the original meshes.

Efficient Domain Error A sufficiently good estimate of the
domain error can be obtained by using the following approx-
imation of the Hausdorff distance:

ε∗d(Ω,Ω′) = max
x∈V −V ′, x/∈Ω′

d(x,Ω′)

that is evaluated for all the removed vertices x which are
external to the domain Ω′. This approximation can be com-
puted efficiently during the simplification process storing for
each boundary face of Σ′, the list of the corresponding re-
moved vertices not contained in Ω′ as described in [4].

5 Error Prediction

For each step in the simplification process, we need to choose
the edge whose collapse causes the minimal error increase,
according to the error definition 1 introduced in Subsec-
tion 4.3. A heap is used to hold error-sorted edges. There-
fore, we need to know in advance what error is introduced
by a single edge collapse. This can be done in two different
manners:

• exact evaluation: the collapse can be simulated on
each oriented edge of the complex, producing an evalu-
ation of the approximation error (according to the mea-
sures defined in Subsection 4.4);

• approximate evaluation: faster heuristics can be
adopted, to estimate the error that will be introduced
by the collapse.

Note that the use of an approximate evaluation in the
error prediction phase (i.e. to update the heap) will not
affect the actual evaluation of the error associated with each
intermediate mesh Σi, which in any case is operated after
each edge collapse by adopting the measures presented in
Section 4.4.
The use of an approximate evaluation can reduce the run-

ning time substantially, because when we collapse an edge
we need to update the heap error for all the edges incident
on vd, and the average number of adjacent edges is around
20-30. Moreover, in many cases it is more important to sup-
port the rapid choice of a probable good edge than to select
the best edge according to an exact error estimate. An ex-
ample is when a simplified mesh of a given size is needed,
and we do not have a strict commitment to the approxima-
tion precision bound.
Three different error prediction approaches are described in
the following, which can be used to choose the probable best
edge.

Local Error Accumulation. This heuristic measures both
the domain and the field errors locally, i.e. with respect to



the vertex that has been unified and removed in the cur-
rent edge collapse action. These error estimates are then
accumulated during the simplification process to give an ap-
proximate global estimate.

Gradient Difference. In order to estimate the error in-
crease, we pre-compute the field gradient ∇v at each vertex
v of the input mesh. This can be done by computing the
weighted average of gradients in all tetrahedra incident at v.
The weight to be associated with the contribution of each
tetrahedron σ is given by the solid angle of σ at v. Then, for
each vertex v in the mesh, we search the vertex w, among
those adjacent to v, such that the difference ∆∇v,w between
the gradient vectors ∇v and ∇w is minimal. Value ∆∇v,w

gives a rough estimate of how far from linear the field is in
the neighborhood of v (in particular, on the edge (v,w) di-
rection). The smaller ∆∇v,w is, the smaller the expected
error increase is if v is removed by collapsing it onto w. The
value (∆∇v,w · L(e)), where L(e) is the length of the edge
to be collapsed, is therefore used as an estimate of the field
error.
This solution is more precise and more complex in terms of
space (because gradients have to be explicitly stored) than
the one proposed in [22], which takes into account only the
difference of the field values on the collapsed edge extremes.

Quadric Error. Another approximate measure can be de-
fined by extending the quadric error metric introduced by
Garland et al. [13]. This metric was proposed to measure the
geometric error introduced on a surface during the simplifi-
cation process. We use it to measure not only the domain
error, but also the field error. The main idea of the quadric
error metric is to associate a set of planes with each vertex
of the mesh. The sum of the squared distances from a vertex
to all the planes in its set defines the error of that vertex.
Initially each vertex v is associated with the set of planes
passing through the faces incident in v. When, for each col-
lapse of a given vs onto vd, the resulting set of planes is the
union of the sets of vs and vd. The most innovative con-
tribution in [13] (and the main improvement over [20]) is
that these sets of planes are not represented explicitly. Let
n�v + d = 0 be the equation representing a plane, where n
is the unit normal to the plane and d its distance from the
origin. The squared distance of a vertex v to this plane is
given by:

D = (n�v + d)2 = v�(nn�)v + 2dn�v + d2

According to [13] we can represent this quadric Q, which
denotes the squared distance of a plane to a vertex, as:

Q = (A, b, c) = (nn�, dn, d2)

Q(v) = v�Av + 2b�v + c

The sum of a set of quadrics can easily be computed by the
pairwise component sum of their terms, therefore for each
vertex we maintain only the quadric representing the sum of
the squared distances of all the planes implicitly associated
with that vertex, which is just ten coefficients.
In the case of 3D mesh simplification the domain error can

be easily estimated by providing a quadric for each boundary
vertex of the 3D mesh. Quadrics can also be used to measure
the field error. In this case we associate with each vertex
v a set of linear functions φi (that is, the linear functions
associated with the cells incident in v), and we measure the
sum of squared differences between the linear functions and

the field on v. Each linear function can be represented by
φ(v) = n�v + d where, analogously to the geometric case,
n is a 3D vector (not unitary in this case and representing
the gradient of the field) and d is a constant (the value of
the scalar field in the origin).
The management of this kind of quadric is therefore exactly
the same as the previous case, but with a slightly different
meaning. In this case the quadric represents the sum of
squared differences between the linear functions and the field
on v. In this way with two quadrics, one for the field and one
for the domain error, we can have a measure of both errors,
which are then composed as described in Subsection 4.3.

6 Results

We have implemented and tested some of the possible
combinations of the error evaluation strategies proposed
above. We present in the following some results concerning
the combinations of different techniques for the error
prediction phase and the post-collapse error evaluation
phase:

LN : we use the Local error accumulation for the error
prediction phase, and the approximation error obtained
after the collapse is Not evaluated (that is, simplification is
driven by the mesh reduction factor).

GN : we use the Gradient Difference for the error predic-
tion phase, and the approximation error obtained after the
collapse is Not evaluated.

QN : we use the Quadric measure of error for the error
prediction phase, and the approximation error obtained
after the collapse is Not evaluated.

BF : Brute Force, we apply a full simulation of all possible
collapses, using the efficient error evaluation described in
Section 4.4.

BFS : Brute Force with added Samples, a set of random
sample points are added in each tetrahedron of the original
mesh; the domain and field errors are evaluated on these
sample points and on the original mesh vertices.

These solutions represent various mixes of accuracy and
speed. The last one (BFS) is the slowest but the most accu-
rate (especially if a very accurate management of the domain
error is requested). But its running times are so high (6x
- 10x with respect to the running time of the BF method),
that the improvement in terms of precision does not justify
its adoption in many applications. The first three techniques
(LN, GN, QN) do not precisely evaluate the error during the
simplification, and therefore we cannot guarantee the mesh
approximation to be lower than the given threshold. This
allows much faster and lighter algorithms, but also prevents
the generation of a high quality multiresolution output.
We have chosen four datasets to benchmark the presented

algorithms: Fighter (13,832 vertices, 70,125 tetrahedra)
which is the result of an air flow simulation over a jet fighter,
courtesy of Nasa; Sf5 (30169 vertices, 151173 tetrahedra)
that represents wave speed in the simulation of a quake in
the San Fernando valley, courtesy of Carnegie Mellon Uni-
versity (http://www.cs.cmu.edu/∼quake); Turbine Blade
(106,795 vertices, 576,576 tetrahedra), dataset courtesy of
Avs Inc. (tetrahedralized by O. G. Staadt).



Fighter Dataset (input mesh: 13,832 vertices 70,125 tetrahedra)

vert. input BF BFS LN GN QN
% εf εq

f
time εf εq

f
time εf εq

f
εf εq

f
εf εq

f
time

6,916 50 40.58 1.34 61.0 17.61 1.54 654 47.46 1.42 52.11 1.65 66.70 1.63 27.0
2,766 20 65.34 2.58 88.9 29.27 2.28 1155 54.17 2.55 66.13 1.85 60.99 2.23 39.8
1,383 10 65.34 2.70 99.9 39.13 2.48 1395 50.87 3.15 67.54 1.99 69.20 2.41 45.2

Table 1: Results of the simplification of the Fighter mesh. Errors are expressed as a percentage of the field range, times are
in seconds.

The numerical results are presented in Tables 1, 2, and 3.
The code was run on a 450MHz PII personal computer with
512MB RAM and running WinNt. Various mesh sizes are
shown in the tables, out of the many different resolutions
produced. The tables show the processing time in seconds
of each different algorithm3, and the actual approximation
error of each simplified mesh. The errors reported in the
tables are the maximum error εf and the mean square error
εq
f , which have been evaluated using the Metro3D tool [8].
Metro3D performs a uniform sampling on the high resolu-
tion dataset (i.e. the number of samples taken for each cell
is proportional to the cell volume); for each sample point
it measures the difference between the fields values interpo-
lated on the high resolution and the simplified mesh.
Some different simplified representations of the Turbine

Blade dataset, produced using the different error evaluation
heuristics, are shown in Figure 4 in Color Plates. The figure
also shows how complex simplification is: for example, the
Turbine dataset contains some very small regions where the
field values change abruptly (near the blue blades the field
spans over the 70% of the whole field range). This means
that a slightly incorrect collapse action, localized in one of
these these regions, may introduce a very large maximal er-
ror.
Having introduced a combined field and domain error

evaluation allows us to simplify meshes with very complex
domain, preserving its boundary with high accuracy. See an
example in Figure 5 in Color Plates.

7 Conclusions

The main results that we have presented consist of the defi-
nition of a new methodology to measure the approximation
error introduced in the simplification of irregular volume
datasets, used to prioritize potential atomic simplification
actions. Given the framework of the incremental 3D mesh
simplification based on edge collapse, the paper proposes
an approach for the integrated evaluation of the error in-
troduced by both the modification of the domain and the
approximation of the field of the original volume dataset.
These two different errors, the domain error and field error,
are used as components of a unified error evaluation func-
tion. Using a multi-variate error evaluation function is not a
new idea, but we have shown that the adoption of a simple
weighted sum can lead to a non optimal priority selection
of the elements to be collapsed. A new error function is
devised by considering the two-dimensional (domain, field)
error space and introducing an original heuristic.
In this framework, we present and compare various tech-
niques to precisely evaluate the approximation error or to

3Times of LN and GN techniques were not reported because
they were obtained using a quick modification of the BF code;
therefore, the corresponding times are not adequate for a fair
comparison.

produce a sound prediction. These solutions represent var-
ious mixes of accuracy and speed in the choice of the edge
to be collapsed. They have been tested on some common
datasets, measuring their effectiveness in terms of simplifi-
cation accuracy and time efficiency. Moreover, techniques
for preventing geometric or topological degeneration of the
mesh have also been presented.

After testing these simplification techniques on a set of dif-
ferent datasets, one could feel that the problem of accurate
simplification of a tetrahedral mesh is harder than the sim-
plification of standard 3D surfaces. In fact, for most meshes,
obtaining high simplification rates introducing a low or neg-
ligible error is not easy, even if a slow but accurate error
criterion is adopted. Conversely, there are many good tech-
niques that can produce a drastic simplification of 2D sur-
face meshes while maintaining a very good accuracy. This is
probably due to the fact that a common habit is to compare
the simplification of a standard 2D mesh (pure geometry)
against the simplification of a 3D mesh supporting also a
scalar field. A more correct comparison would be to con-
sider the performances of simplification codes on 2D meshes
which also have an attribute field attached (e.g. vertex col-
ors). Analogously to the results obtained in this work, it has
been demonstrated that in the latter case a drastic simplifi-
cation cannot easily be obtained, unless the color field has a
very simple distribution on the surface. Therefore, the qual-
ity of attribute-preserving simplification strongly depends on
the distribution of the scalar attribute over the mesh and,
at the same time, on the mesh structure. In many cases
a drastic reduction cannot be obtained unless we decrease
the accuracy constraint. Unfortunately, data accuracy is a
more critical requirement in scientific visualization than in
standard interactive computer graphics: when we visualize
scientific results we must be sure that what we are seeing
is correct and not only seems correct. For this reason we
think that data simplification can be safely used in scientific
visualization only if it is coupled with sophisticated dynamic
multiresolution techniques that easily/efficiently allow to re-
cover the original data when (and, hopefully, where and how)
needed. In this way the user can safely exploit the advan-
tages of simplification technology (less data to be rendered)
because he is also able to use locally the original data on
request (e.g. in small selected focus regions).
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Figure 4: Different simplified meshes produced from the Turbine Blade dataset. The different meshes shown, of size 10,679
vertices, were produced with the BF, BFS, LN and QD techniques (from top-left, clockwise).

Figure 5: Different simplified meshes produced from the fighter dataset using the BFS technique; the mesh shown are
composed, respectively, of 13,832, 6,916, 2,766 and 1,383 vertices; the corresponding errors are shown in Table 1. Note how
well the boundary is preserved even on the coarsest simplified model.


