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Abstract

We present an approach to the reconstruction

of 3D textured models of buildings starting

from photographic data. We have de�ned a

simple and easy to use interface that allows

inexperienced users to be driven in the pro-

cess of entering all the inputs (points, seg-

ments and so on, detected on the photo) nec-

essary to de�ne the geometry of the building.

The basic building block is the rectangle, and

mechanisms are provided to make the interac-

tion intuitive, fast (in the order of few minutes

for reconstructing a simple model of few tens

of quads), and leading to relatively precise re-

sults. The system then builds the correspond-

ing mesh, previewing it directly using perspec-

tive textures, or resampling recti�ed texture

to export the reconstructed model into a com-

mon mesh format.

1 Introduction

In the �eld of automatic acquisition of 3D

models, a special case is represented by build-

ing acquisition. Direct CAD modeling re-

quires, even for a poorly detailed model,

very large amount of data to be retrieved

and input by expert users, and often leads

to arti�cial-looking, error prone results. On
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the other hand, typical automatic acquisi-

tion tools (laser scanners, structured light, sil-

houette based techniques, stereography, TAC

scans) appear far too complex, expensive,

time consuming for the case (when not to-

tally inadequate for targets as large as a build-

ings). For most applications purposes, in fact,

the model of a building may be approximated

with a very simple geometry, characterized

by parallel at surfaces and orthogonal lines.

Those features may be exploited in order to

reconstruct the model geometry even from a

single, uncalibrated picture, with few \hints"

from an human user. In the same time, a

wealth of realistic detail can be retrieved from

the same picture as textures, in a fully auto-

matic way.

In order to obtain reasonably accurate tex-

tured meshes in the cheapest possible way, the

main concern is to minimize the e�ort needed

by the user (the computation time has proven

short, and is anyway much cheaper). Another

concern is exibility : the approach should be

able to deal directly with a great variety of

buildings forms. Finally, we aim at the qual-

ity in the output standard meshes.

2 Related Work

Some other works have been presented to ac-

quire building geometry, exploiting the reg-

ularity typical of many architectural styles

which allows to infer geomery from the direct

use of prospective geometry rules.



Some of these methods use, as input, a large

set of closely spaced images [9, 1], while others

concentrate on what can be recovered from a

single, or a very few, images.

The technique presented in [5] integrates a

method to acquire models in a particular for-

mat (using view dependent textures) as well

as the method required to render them, lead-

ing to an integrated acquire-and-render tool

(while our approach is aimed at producing ex-

portable models). Also, in [5] multiple im-

ages are necessarily used, each with known

position and calibration. The interface pro-

posed by this approach looks quite compli-

cated, consisting in identi�cation of edges,

manual matching of them to correspondent

part of prede�ned 3D building blocks and def-

initions of relations between building blocks.

Another, similar technique is presented in [7],

using results from [3] and [4]. Here the cam-

era calibration is computed as a part of the

method, and therefore its knowledge is not

needed, and single view can be used.

In all those papers, the focus is on what can

be evinced from the photos and some auxiliary

data (identi�cation of lines, planes etc), and

not on how a common user could introduce

those required data.

Finally, the intelligent scissors method pre-

sented in in [8] can be integrated in our ap-

proach to identify, faster and better, lines on

the photo, helping in the task of minimizing

user e�ort, and improving result precision.

3 Overview

In the approach we are proposing the user

interactively supplies all the info needed to

reconstruct a 3D model starting from pho-

tographic data, in the form of a purely two-

dimensional identi�cation of point, lines and

rectangles on the image. During this process

the system uses all the data collected since

then both to build the model (the user can

see at any time what has been reconstructed)

and to help the user in the subsequent input

of new data (e.g. placing new points is an

operation that is aware of previous inputs).

In Section 4 and 5 we will (briey) expose

the techniques used to build the 3D textured

model starting from photographic data and

the user input, while in Section 6 we will de-

scribe the required used interaction and how

the system exploits the collected data to help

the user to supply new data.

4 Basic geometry

The basic element used in the mesh recon-

struction is the matching between a the at

rectangle in 3D world (rW from now on) and

its projection visible on the photograph im-

age r
I ; we refer to the couple (rW ; r

I) simply

with the term r. Each r
I shape is an irregu-

lar convex quad. At the end of the process,

the acquired model is represented by a set of

textured at rectangles, one corresponding to

each r
I . Rectangles are very versatile for a

great variety of buildings (not all, though; for

example, round surfaces, like columns, and

pyramids could be dealt better with an ap-

proach based on solid blocks).

Each r
W lies on a plane belonging to a set

of parallel planes (p from now on), which can

host more that one r
W . Internally, each p is

represented by two 2D points on the image,

the vanishing points of two orthogonal lines

on any plane of that p. A p can be identi-

�ed by two distinct sets of 2D segments in the

picture, each set containing projections of re-

ciprocally parallel 3D segments; in each set

the intersection of the prolonged 2D segments

produces one of the two vanishing points.

With three1 p's relative to three reciprocally

orthogonal planes, the calibration of the cam-

era can be evaluated [7, 10].

Given a calibration and a p it is possible to

compute the 3D normal of its planes, and also

the two orthogonal 3D directions of the two

orthogonal lines on those planes. This means

that we can correctly orient in 3D any ri lay-

ing on that p. Still, an ambiguity remains

on the position of a given r
W
i with respect to

1Two p are suÆcient if the central point is assumed

to be in the center of the picture.



other r
W 's, and on its size: we do not know

on which plane of a p a given r
W
i lays. This

ambiguity cannot be solved without some ad-

ditional data; infact, in theory, there is no dif-

ference, in the original photo, between an pro-

jection of a given rectangle and the projection

of a smaller, nearer rectangle.

Also, not knowing absolute camera posi-

tion, it is impossible to �nd any absolute po-

sition or size of the model: instead we aim to

obtain a model in which all the positions and

sizes are expressed with a coherent unit and

in a common axis system. This can be solved

by electing an rb as base reference and by lo-

cating (i.e. resolving the aforesaid ambiguity)

any other r with respect to it.

Locating the r
W
b means that we set one of

its vertices as the origin of the whole model

and we assign to r
W
b an arbitrary size (obvi-

ously respecting its aspect ratio). Then, given

a ri already located, any other rWj can be eas-

ily located with respect to r
W
i knowing the 2D

position, on the photo, of a point lying:

1. on the intersection of the planes hosting

r
W
j and r

W
i ;

2. on plane hosting r
W
j and projection of

that point on the plane hosting r
W
i .

In a great majority of cases, there are easily

identi�ed points to localize, in either way, all

the r (the most common case, i.e. identi�ca-

tion of a point in the intersection of two r, can

be seen as a particular case of both 1 and 2

above).

5 Texture synthesis

Knowing the camera calibration, it is possi-

ble to compute (as in [7]) a mapping mi(hx;y)

from each point h inside a given ri into a point

inside two-dimensional rectangle representing

the same ri as seen from front, i.e. removing

the perspective distortions.

The inverse mapping hx;y = m
�1

i (ku;v) al-

lows us to build for each rectangle r
W
i its tex-

ture ti, �nding for each of its texel position

ku;v, the corresponding position hx;y in the im-

age (since hx;y, in general, is not an integer

value, rather then just rounding its compo-

nents, anti-aliasing e�ect can be obtained by

using its fractional parts as weights for averag-

ing the appropriate four pixels of the original

image).

The size and aspect-ratio of the textures ti

are not strictly dependent on the correspond-

ing r
W
i but are chosen to be equal to the same

number of pixel of the average of the two cor-

responding sides of rIi . For example, for a ver-

tical ri, the height of ti is the average of the

lengths, in the picture, of the left and the right

edge of rIi . In this way we avoid to waste tex-

ture space [or original image information] by

creating texture that are excessively large [or

small].

The reconstructed textures ti can be packed

in a single rectangular texture. It has been

chosen a simple, ad-hoc packing algorithm,

that, even if it does not guarantee optimal-

ity, has proven to be eÆcient and produces

compact textures.

6 Interface

The elements presented in the previous sec-

tions are very basic, but still are suÆcient to

reconstruct a textured mesh starting form a

photo and some image elements (edges, cor-

responding point pairs, etc). The system in-

terface, described in this section, supports an

inexpert user in all the steps needed to per-

form the above atomic actions, and simpli�es

his/her work exploiting the redundancy that

in many case is present in the data (as an ex-

ample, a 2D point elected as a vertex of an r
I
i

could also be a vertex of another rIj ).

The proposed interface is based on a set of

tools that drive the user in the process of 3D

reconstruction of a building.

The �rst tool to be used, and initially the

only available, is the plane identi�er. The

user is asked to determine on the photograph

three sets of segments oriented in three or-

thogonal directions. Three vanishing points

are detected by computing intersections of the

extensions of those segment, and each pair is

used to identify a di�erent orthogonal p; the

three p are in turn used to obtain the cal-



Figure 1: Visualization of currently selected

plane set, on which a rectangular election will

be drawn.

ibration for the given picture. Subsequent

use of the plane identi�er tools requires only

two set of segments to be identi�ed, and the

third vanishing point is computed through the

aforesaid calibration. In any case, only two

segments per set are needed, but if more are

provided then the redundancy is used by the

system to improve precision.

Once at the �rst p triplet is determined, the

rectangle identi�er tool becomes available and

can be used to determine r
I's. First of all, a

p is selected, switching between all p's present

at the moment (Figure 1 shows how the cur-

rently selected p is visualized). Then the user

can interactively identify a r
I by a \rubber

banding in the perspective space" (i.e. one

vertex of the rI is placed in the spot where the

mouse is when the button is pressed, the op-

posite one is dragged around with the mouse

until button is released, and meanwhile the

other two vertexes are computed using inter-

sections with the current p vanishing points).

With the retouching tool user can change

a previously created r
I by selecting one of its

vertices or sides and dragging it in a new posi-

tion. Changing the position of a side changes

the position of the two delimiting vertexes,

while moving a vertex causes the automatic

change of its two adjacent vertexes, so that

the parallelism of edges of the corresponding

r
W is respected.

Figure 2: Visual feedback of a vertex, not be-

ing attracted (left), or being attracted to a

line (middle), or to another vertex (right).

A snapping mechanism is provided to fa-

cilitate the de�nition of perfectly adjacent

r's. Whenever a vertex is moved (or created)

nearby another vertex or line, the former is

\attracted" onto the latter, meaning that it is

moved in the same position. There's a thresh-

old distance for attracting element, varying

with the zoom-ratio, and the attracting mech-

anism can be overridden keeping an apposite

key pressed. Each point has a small square

handle that allow interaction with it. The

orientation of the handle provides a graphi-

cal feedback on whether the currently moved

vertex (or side) is being attracted by a line,

or by a vertex, of it is not attracted at all (see

Figure 2).

During the drawing operation, to cancel the

attraction is suÆcient to move the attracted

vertex away from the attractor. However,

when the button is released, the \attraction",

if present, becomes de�nitive and the two ele-

ment become \glued" one to the other, mean-

ing that any subsequent change of one of them

a�ects the other (or the others). More than

two vertexes can be glued in the same posi-

tion. If necessary, \gluing" can be undone by

moving one of them away from the other(s)

while pressing another apposite key.

This automatic movement of glued ele-

ments, together with the movement of a ver-

tex triggered by the movement of one vertex

on the same r
I (see above), and movement

of vertexes due to attraction, causes a sort of

cascade e�ect of updates (see Figure 3). Re-

touching a vertex, for example, can cause the

movement of two vertex on the same rIi , which

in turn causes the movement of a side of an-

other rIj glued to one of them, and so on. The

�nal combined result is seen by the user as the



Figure 3: Example of cascade e�ect: moving

a single vertex, as the arrow shows, causes

several other vertexes to move accordingly.

consequence of that single editing operation

(intermediate step of Figure 4, for example, is

never seen).

To avoid a in�nite recursion, �rst of all

we forbid vertex to move (and cause cas-

cade movements) if its destination is very

near (a fraction of a pixel) to its current po-

sition. This prevents vertexes to mutually

cause small displacements as a consequence

of rounding errors.

To deal with the other cases of in�nite re-

cursion, an easy way would be to limit each

vertex to be moved at most once as a conse-

quence of a single user operation. But, this

would not allow situations like the one shown

in �gure 4, where one change is propagated

forth and back to vertex being moved by user,

which proved to be very useful in order to

quickly determine precise r's. Therefore, we

preferred to assign a priority to each vertex

movement, depending on the nature of the

triggering original event (from lower to high-

est: user determined, attraction to a line, at-

traction to a vertex). For a given input, a

vertex will only move as a consequence of a

movement with higher priority of the one that

caused its last movement.

Figure 4: Example of back-cascade e�ect.

Left: users moves vertex a in a
0, causing also

the movement of b in b
0 and c in c

0. Middle:

now b
0 is near enough to another vertex e, and

therefore is moved over it, in b
00; this causes

also d to move in d
0 and a

0 to move for the

second time, in a
00.

7 Cutting rectangles

Given a de�ned r and selecting the appropri-

ate tool, the user can cut a polygonal shape

in it, dividing it in two distinct parts.

One of the two parts can then optionally be

deleted, producing in the r an hole or an ir-

regularly shaped contour (depending on which

part is trashed). The internal part, if not

trashed, can be \pushed in" or \popped out"

along the normal of the rW , adding to the �nal

model, in the process, a quad for each side of

the polygonal shape. This can be useful both

for quickly de�ning some classes of topologi-

cal detail (like the typical recesses of windows,

doors, and the like), and also to increase the

number of building forms that can be dealt

with. During 3D model construction, irregu-

lar polygonal shapes need retriangulation.

The drawing of the polygonal shape inside

a r, for a better precision, is done on a tempo-

rary, recti�ed image representing the r being

cut rather then directly on the original pho-

tograph, and with the aid of mechanisms to

draw perfectly vertical or horizontal lines.

To avoid confusion, the shape, whether ex-

truded in/out, or deleted, is a feature totally

below the level of r's, meaning, for example,

that extra points added at the polygonal ver-

texes, or the extra quads used for the extru-

sion e�ect, do not attract other rI vertexes.



8 3D model reconstruc-

tion

The system supposes that elements (rI ver-

texes or sides) \glued" one to another are ac-

tually coincident (or laying one on the other)

in the 3D model. In this manner, the infor-

mation needed to \locate" (see Section 4) one

r to another r is obtained without any addi-

tional user input.

Still, sometimes some r
I's are not \glued"

to any other r
I in the model. To discover if

this is the case (which actually happens only

rarely), before computing the 3D model, the

system computes a connection graphA (nodes

representing r
I's and arcs connecting two r

I 's

with at least an element of the �rst glued to

an element of the other), and, if A is not con-

nected, it �nds out its biggest connected sub-

graphA0. Any r
I not inA0 is ignored until the

user adds one or more \connection lines" (lI ,

a new entity consisting in a single line drawn,

using the suitable tool, on the current plane).

At any moment, the user can see the model

resulting from the currently de�ned r
I's. In

fact, once the user has input the data, the

only time consuming operation of model re-

construction is the resampling one, used to

build the textures for the model (see Section

9 for some quanti�cation). Using projective

texture (see [6]), the resampling step can be

avoided at all: the original image is directly

used as texture, allowing the user to see the

ongoing model in real time.

Resampling and packing of textures must

eventually be done in order to export the re-

sult in common 3D mesh formats that does

not support projective textures (like VRML

or other modeling package formats).

9 Results and Conclusion

A prototypal application (Figure 5), which

uses just a photograph at a time, has been

developed to test the interface usability and

Figure 5: A snapshot of the application.

the method eÆciency2.

All the geometric computation are easily

done in interactive time on a PC3.

Texture synthesis is only slightly more time

consuming: only 1.65 seconds where necessary

to resample, using antialiasing, the full reso-

lution texture4 shown in Figure 6.

More importantly, it has been possible to

test that the prototypal application requires

just about three minutes of user time to recon-

struct a simple geometry like the one shown

in Figure 6.

The method proposed, based on at rectan-

gles as basic building blocks, identi�ed on pre-

de�ned planes, with the attracting and gluing

mechanisms, has advantages and drawbacks:

� Rectangles are very versatile for a great

variety of buildings. Unfortunately, they

do not �t for curve surface, but none of

the proposed block-based approaches is

able to manage this type of architectural

elements.

� Often many parts of a building, even

2The part about cutting quads described in Section

7 is still under implementation.
3We used a 350 MHz Pentium II, with 64 Mb of

RAM
4sized 1024� 1024, but with only about 600K re-

sampled texel, the rest being wasted for packing and

for making both texture coordinate a integer power of

2



Figure 6: Above, the reconstructed geometry

(21 quads). Below, a recti�ed, resampled and

packed 1024x1024 texture is added.

when far apart, are oriented in the same

direction, and therefore it pays to de�ne

once for all those directions (i.e. p's), to

simplify the de�nition of r (which then

requires only two opposite vertexes).

� The gluing mechanism not only aid the

user, and allows its inputs to be inte-

grated, but also improves precision: in

fact, a position of an element, e.g. the

side of an r, can be determined (even

when totally occluded) by looking at the

positions that other elements assume as

a consequence of a possibly long chain of

cascade e�ects.

10 Future work

The presented approach could be enriched by

a number of features.

A possible extension in case of multiple pho-

tos is as follows:

1. Apply the method to the �rst photo, ob-

taining a mesh m1.

2. Reproject the current mesh into the next

photo obtaining an automatic initial set

of input data for it.

3. Complete, using the user interface, the

set of data with information identi�able

from the current photo, and obtain a

more complete mesh m2.

4. Repeat from second step, until all photos

are processed.

The second step requires an alignment

problem to be solved (if the camera position

is to be left unknown); the third step re-

quires some technique to merge the textures

when they overlap (for example, with view-

dependent textures as in [5], which unfortu-

nately would require an ad-hoc renderer).

In order to increase the geometrical detail,

a good technique is to synthesize bump-maps

rather then increasing the number of faces

used in the mesh. As in [5], displacement

maps could be computed with model based

stereo, where the second photograph is com-

pared, rather than directly to the �rst photo-

graph (which is shot from a di�erent point of

view), to an image obtained by rendering the

textured model obtained by �rst photograph,

so that the viewpoint of the two images is the

same.

As an alternative, one could obtain a

normal-map, using multiple photos shot form

the same viewpoint at di�erent time of the

day. For each pixel, comparing at least three

di�erent shading corresponding at di�erent

sun positions, it is possible to compute the

normal and the base color, similarly to [2].

Finally, in the current implementation,

sometimes, zones of the reconstructed texture

contain an occluding object (like other parts

of the same building). Those parts should be

identi�ed and �lled otherwise.
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