
EUROGRAPHICS 2000 / M. Gross and F.R.A. Hopgood
(Guest Editors)

Volume 19(2000), Number 3

Real Time, Accurate, Multi-Featured Rendering
of Bump Mapped Surfaces

M. Tariniy , P. Cignoniz, C. Rocchinix and R. Scopigno{

Istituto Elaborazione dell’Informazionek ITALY, C.N.R., Pisa, Italy

Abstract

We present a new technique to render in real time objects which have part of their high frequency geometric detail
encoded in bump maps. It is based on the quantization of normal-maps, and achieves excellent result both in
rendering time and rendering quality, with respect to other alternative methods. The method proposed also allows
to add many interesting visual effects, even for object with large bumb maps, including non-s rendering, chrome
effects, shading under multiple lights, rendering of different materials within a single object, specular reflections
and others. Moreover, the implementation of the method is not complex and can be eased by software reuse.

1. Introduction

Texture mapping has been widely used to enhance realism of
computer generated images. The possibility to remap a two-
dimensional color map over the projection of a 3-D polygon
is crucial in order to produce rich color details in interactive
time. Even low cost graphic hardware is now able to han-
dle textures, and mapping is nowadays very efficient and,
more importantly, the computation can be off-loaded from
the main CPU.
Standard textures (i.e. rgb maps) add pictorial detail to the
surface (like paint, labels and so on). Bump mapping tech-
niques1 have been proposed to add 3D detail (or at least a
convincing illusion of it) to a surface.
It is useful to introduce now the terminology used in this
paper: to be clearer in the illustration of the proposed tech-
nique, we will use the termbump map in a generalized way,
meaning by it any 2D texture aimed to add 3D detail over a
surface. Bump maps can be classified in three main different
modalities:

y Email: mtarini@di.unipi.it
z Email: cignoni@iei.pi.cnr.it
x Email: rocchini@iei.pi.cnr.it
{ Email: roberto.scopigno@cnuce.cnr.it
k v. V. Alfieri 1, 56010 S. Giuliano T. (Pisa

� displacement map: each texel (texture pixel) stores a
signed distance along the normal between the correspond-
ing point on the polygon and the real surface (this is what
is usually called bump map);

� normal map: each texel encodes the 3D normal of the
point on the real surface corresponding to that texel;

� light map: each texel is directly the precomputed shade
(RGB value, or just intensity value to be applied over a
base color) for the corresponding point of the surface; a
light map is just a static color texture used to approximate
unmodeled geometrical details under a fixed lighting con-
figuration.

Bump maps can be very useful to render high-frequency
geometrical detail on a given object. Many objects can be
represented by iterating a very small bump map over the sur-
face (e.g. an orange skin or a bricked wall). Another, dif-
ferent use of bump maps is to permit the use of very low-
complexity models that still appear rich of non-repetitive de-
tail (as in Figure 1). For this purpose, the bump-map must be
much larger and in general a bump texel is used only to rep-
resent a single point of the surface (our technique focuses
on this use of bump maps). This type of bump map is ob-
tained as a natural output in a number of modeling tech-
niques: during mesh simplification, bump maps are useful
for storing, in the simplified model, the geometrical detail
present in the original model6; 12; in physical object acquisi-
tion, a normal map can be obtained by processing multiple

c The Eurographics Association and Blackwell Publishers 2000. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.



Tarini, Cignoni, Rocchini and Scopigno / Real Time Bump Mapping

photos (shot under different lighting conditions) of the ac-
quired object5; 18; 17; displacement maps are computed from
pairs of stereoscopic images7.

This paper introduces a new simple and efficient tech-
nique to render bump maps stored in the form of normal
maps. In short, at preprocessing time, the normal map is
quantized; then, during rendering, alight map is computed
on the fly starting from the quantized normal map through a
lookup table.

In comparison with other approaches, our approach
presents many advantages: computational efficiency, low
memory cost, accuracy in the implementation of Lamber-
tian reflection, possibility of adopting non-Lambertian light-
ing models, use of different lighting models within different
parts of the same object. Also, rendering time does not de-
pend much on texture size, allowing the use of large bump
maps. Another advantage of this technique is that its efficient
implementation is much eased by reusage: the preprocess-
ing phase can reuse directly results and standard software
intended for image processing (RGB palette quantization);
the rendering phase uses common features of 3D accelerated
hardware, that have been developed for different purposes
- mainly to save texture memory (paletted texture). A first
comparison with alternative solutions is presented in Sec-
tion 2, and a more detailed evaluation is in the concluding
section.

The paper is organized as follows. A brief overview of the
state of the art is in Section 2. The proposed technique is out-
lined in Section 3. The two following Sections 4 and 5 show
in more detail the preprocessing and rendering steps, respec-
tively. Since most common approaches to render (and syn-
thesize) bump maps are based on displacement maps, Sub-
section 4.1 describes, for completeness, a method to con-
vert any displacement map into a normal map. Section 6
describes how multiple lighting models can be managed. In
Section 7 we analyze the issue of adding color: like other ap-
proaches that use (computed-on-the-fly)light maps, we have
to blend the shade information with the possible underlying
color (typically a color texture). Finally, Sections 8 and 9
reports results and conclusions.

2. Related works

There are many ways to visualize a mesh whose polygons
are enriched by some kind of bump-map. The methods can
be divided in those that are intended for real time interactive
rendering (like ours), and those that are intended for off line
rendering.
Another distinction is on rendering results. There are two
distinct effects that can be rendered to visualize the shape
detail encoded in a bump map:

1. shading the surface of the object according to the en-
coded shape detail;

Figure 1: The Stanford bunny. Top-left: a rendering of the
original model (69.4 K faces). Top-right: a highly simplified
model (251 faces), where most of the high frequency shape
detail is lost. Below: real-time bump-mapped rendering of
the same simplified mesh, produced using a table of 2048
normals.

2. applying adistortion on the shape of the surface of the
object, according to the encoded shape detail.

Let us callshade basedthose techniques that follow the
first approach (and our approach is an example of such tech-
niques) andshape basedthe techniques that follow the sec-
ond approach or more preciselyshape-only basedthose that
only performs a shape distortion but not consider shading.

In the case ofshade-basedtechniques, only the color in-
tensity of the object will change according to the bump map.
The approximation of the geometrical detail will be good if
the geometry of the mesh is sufficiently accurate, and the
best use of the bump-map is to store high frequency de-
tail (like smoothness, roughness, bumps, small holes, cesel
marks, discontinuities and so on).
Conversely,shape-basedtechniques modify also the silhou-
ette, the shape and the parallax of the rendered object ac-
cordingly to the bump map. This can be useful for example
for rendering impostors.
Note that anyshape basedtechniques require displacement

c The Eurographics Association and Blackwell Publishers 2000.



Tarini, Cignoni, Rocchini and Scopigno / Real Time Bump Mapping

maps, whileshade basedtechniques in general can use any
specific kind ofbump map.

A very straightforwardshape-basedapproach, in the case
of displacement-maps, is to get rid of them by converting
them into naked geometry. In fact, one can consider each
texel as a vertex of a refined new geometry, and the new
topology is simply derived. If a model has also a color tex-
ture, that it can be easily converted in the form of per-vertex
colors. Following this approach, lighting and shading are
simply postponed to the rendering phase and the visual re-
sults are very good. Obviously, this brute force technique has
an huge overhead in space and rendering time and it is there-
fore suitable only for off line rendering.
A less brutal technique forshape-only baseddisplacement
map rendering has been presented in14. The main idea is
as follows: the displacement map, during rendering time, is
first converted into an ordinary texture, via a two pass 1-D
transform. Then, the resulting bump-map is warped around
the object with standard texture mapping. The basic disad-
vantage of this technique is the long time the first render-
ing phase takes with current hardware (even if authors claim
that specific hardware could be designed to deal with it).
Note that since no real time shade calculation is done, this
technique is orthogonal, rather than alternative, to the one
presented. In fact, instead of having a displacement map to-
gether with a color texture, one can imagine to have a dis-
placement map, to be used as in14, andthe quantized normal
map as in the technique proposed in this paper.

Shade basedtechniques are a very good alternative to
shape basedones: they proved to give a very convincing il-
lusion of bump while not being nearly as time consuming.
Shade baseddisplacement-map rendering can be imple-
mented by perturbing the normal of each pixel during ren-
dering1; this approach relies on per pixel computations that,
even when optimized, are very expensive. To overcame this
problem, a number of approximations are introduced, most
notably the tangent vectors are held orthogonal. Approxima-
tions of this per pixel process have been proposed, designed
for hardware implementation. The productspu �n and pv �n
between the tangent vectorpu and pv and the surface nor-
mal n, for example, is assumed constant for each polygon
in 8. Similarly, pu andpv are supposed orthogonal and their
length equal, and they are supposed to change slowly over
the polygon in15. A common side-assumption is that dis-
placement values are small. All this leads to artifacts, and
therefore to a less convincing illusion of physical bump be-
ing present. Also, the lightning effects obtainable on a bump-
mapped surface are limited to Phong and Lambertian shad-
ing.

Since hardware implementations are,ipso facto, expen-
sive, many approaches, like ours, try to reuse existing hard-
ware rather than designing new one.
The most straightforwardshade basedprocedure to visual-
ize a bump-map is to convert it, off-line, in a staticlight map,

to be used as a color texture during rendering. The pros and
cons of this are obvious: rendering is very fast, there is no
time limit on the calculation of the lighting model and the
light map can be blended with the color texture once and for
all during preprocessing. On the other hand, this approach is
limited to static lighting. Moreover, because we cannot con-
sider the viewpoint position during the creation of the light
map, we cannot compute view-dependent effects, such as the
specular reflections.
Many techniques have been developed to obtain dynamic
lighting. A common technique is an extension of an emboss-
ing algorithm for height fields19, and consists in applying
the same displacement map twice, as a color texture, shifting
each time the position of the texture coordinates. The shift
is computed, for each vertex, so that blending the displace-
ment map with itself leads to an approximation of its deriva-
tive, which in turn is an approximation of the diffuse reflec-
tion. Specular reflection is not possible, unless the hardware
gives some possibility to perform quickly a power rising for
each texel (in that case, phong reflection takes two additional
passes). Only very basic lighting models are rendered, and
the light map calculated is only an approximation; some vi-
sual artifacts are produced especially if the displacements
in the map have a considerable magnitude, or if the tangent
vectors vary quickly over a polygon.
A more sophisticatedshade-basedtechnique using displace-
ment maps was proposed in13. Again, it uses the same ap-
proximations as in1, with the same visual results. For each
frame, before rendering, a normal-to-shade function is regu-
larly sampled over a unitary sphere, using polar coordinates,
with a mathematical technique capable of quickly computing
lambertian and specular reflection over a sphere for a distant
light. During rendering the displacement map is transformed
in a normal map (each normal expressed in polar coordi-
nates): the result, cached for any subsequent frame, is used
to obtain the shading taking for each texel the nearest value
from the sampled sphere. Even considering these optimiza-
tions, computation is comparatively heavy, even if suitable
for small texture maps. The precomputed normal-to-shade
sampling used in13 can resemble the index-to-shade table we
use. Differences are in the sampling distribution of the table
(uneven and independent from the shape of the rendered ob-
ject, therefore requiring use of many more normals); in the
synthesizing process of the table (which, being bigger, re-
quires optimizations that limits the scope to lambertian and
specular reflection and force the use of polar coordinates); in
the way the table is used to transform the texture (not using
any hardware and requiring to reload at each frame the tex-
ture on the graphic board from the system RAM).
A recent software technique forshade basedbump-mapping
is based on normal maps9. It can emulate only the Lamber-
tian reflection for distant lights, but the emulation is totally
faithful. The technique consists in a multiple pass rendering
to obtain the light map (one pass for ambient and six passes
for Lambertian). The normal map is divided into six textures,
so that each one of its components (x, y andz) is stored in two

c The Eurographics Association and Blackwell Publishers 2000.



Tarini, Cignoni, Rocchini and Scopigno / Real Time Bump Mapping

different texture (one for the positive and one for the negative
values). The Lambertian reflection (that is, the dot product
between the normal and the light vector) is obtained using
the rendering transparency support of the graphic hardware:
each pair of passes implements, directly on the display mem-
ory and all over the object, one of the three sums composing
the dot product:l � n = (lx � nx) + (ly � ny) + (lz � nz). The
ambient factor is computed with an extra, un-shaded pass.
As usual, an additional pass (and an additional texture) is
anyway required to add color. But the need to perform six
rendering passes for Lambertian shading alone, plus one for
each rgb texture, represent a severe overhead in time and
space.

To finish, the work presented here has something in com-
mon to the technique presented in2 and more recently in10

where, in the final image, for each pixel some data is stored
so that the rendered image can be quickly re-processed to
simulate changes of the light position. For example, an in-
dex to a normal is stored in2); info about the reflected en-
vironment (light and a spherical polar representation of the
reflected ray) is stored in10. But in both cases only a two-
dimensional static view of the model can be dynamically
lighted.

3. The proposed technique: an outline

Our bump-mapping rendering technique consists of a pre-
processing phase and a rendering phase.
The goal of the preprocessing phase (see Section 4) is to ob-
tain a quantized normal-map. Any normal-map can be quan-
tized into one that uses onlysN different normals: at the end
of this process we have a texture image where each texel
is an index to one of thesN entries on a lookup tableN of
normals. If the shape detail is mapped on the object via a
displacement-map, than we first convert it into a normal-map
(see Section 4.1).
In the rendering phase (see Section 5), for each frame, we
first apply our lighting model (which starts from the current
light direction and viewpoint position) on all thesN normal
vectors contained in the look-up table, obtaining the color
tableC which maps normal-indices to shaded colors. Then,
using standard texture rendering features, we apply it auto-
matically to each texel of the the indexed normal texture,
transforming it in the proper light-map for that frame.
While all the normal maps used in the paper have been pro-
duced using the technique proposed in4; 6, the technique pro-
posed is very general and can be applied on any type of
bump-map. An example of one of the normal maps used is
in Figure 2.

4. Preprocessing: creating a quantized normal-map

As introduced above, given a normal map (encoded in object
coordinate system) we want to quantize it, that is, to replace
each normal by (the index of) one other normal chosen in a

Figure 2: Rather than showing the object (bunny mesh), we
show here the corresponding texture map (1024x256 pixels,
with normals mapped in the rgb space).

Figure 3: Quality loss due to normal quantization. The same
geometry (256 faces) is used in all the images; quantized
normal maps with 16, 32, 64, 128 different normals are used
above, 256 and 512 for the two images in the middle and
1024 and 2048 in the last two ones.

small setN of representative ones of sizesN . This, in gen-
eral, introduces an error, since each normal in the normal
map will be replaced by the “nearest” normal inN.
The choice of the parametersN is crucial: if we use only a
few representative normals we obtain very fast rendering and
preprocessing times, a low memory cost, but a worse nor-
mal approximation and image degradation. Conversely, the
process becomes slightly slower but more high quality if a
denser normal sampling is used. Empirically, for standard all
round objects (the worst case), a value of 256 should be con-
sidered the minimum sufficient to produce sufficient results,
when dithering is on and for solitary objects (see Figure 3).
Excellent results are produced usingsN = 2K normals, while
for sN = 16K the approximation is in practice invisible.

c The Eurographics Association and Blackwell Publishers 2000.



Tarini, Cignoni, Rocchini and Scopigno / Real Time Bump Mapping

Figure 4: Both images show the bunny bump-mapped using
just 256 normals, but the image below uses a dithered nor-
mal map.

The selection ofN takes in account only the initial set of
normals actually used in the object. This means, for exam-
ple, that large flat surfaces will only have a sample inN,
while complex bumped surface will have many more. In the
example in Figure 1, for example,N will have a very few
normal pointing downward, but many more pointing some-
where upward (the lower part of the bunny is almost flat).
Normal quantization can be easily obtained just reusing stan-
dard image processing software. In fact, a normal composed
of x y zcomponents, can be stored directly as anr g b pixel
(mapping the interval[�1::1] into [0::255]). Once the nor-
mal map is stored as a 24 bit image, it is then sufficient to
transform the obtained image into a paletted image (setting
the palette size to besN). The color palette computed in the
process represents the setN of normals. Obviously, we must
remap back each entry of the palette from[0::255] to [�1::1]
and then renormalize it, but this is again a fast process due
to the small size ofN.

As noticed in many papers on color quantization, dither-
ing is very useful to reduce the visual impact of the ap-
proximation, (especially if we use a small palette). Applying
dithering to normals produces as well an improved image
quality (see Figure 4).

4.1. Displacement map to Normal map

This section shows, for completeness, a simple way to trans-
form a displacement mapinto the correspondingnormal

map required by the proposed technique. This is a pre-
processing phase, that has to be performed only once for
each map. Time efficiency is thus not critical; therefore, we
can spend some time to obtain a precise conversion, which
is important with respect to visual quality.
A good approach to do this conversion is to find, for each
texelt mapped on the surface, the plane fitting the points cor-
responding tot and to otherq texels displaced in the neigh-
borhoods oft (e.g. forq= 4, we take the texels on the right,
on the left, above and below.).
Working on a coordinate system with thex andy axis on the
surface of the polygon, andz along the normal, the problem
becomes a two-dimensional one: the plane can be parame-
terized with a triplet(a0;a1;a2) (for (x;y;z) on the plane,
a � (x;y;1) = z). The best fitting plane is found by applying
LMS to minimize (Xa� d)2, where X is the matrix com-
posed byq rows, one for each texeli, of the form(xi ;yi ;1),
anddi is the (scaled) displacement value at coordinatexi and
yi . The obtained vector(�a0;�a1;1) is then translated on
the real word system, normalized and stored in thenormal
mapat the corresponding texel.

5. Rendering quantized normals to color

To transform quantized normals into dynamically shaded
colors, we need to introduce a small modification to the
standard rendering pipeline, by introducing a new view-
dependent phase. Our enhanced renderer, when loading the
indexed normal map associated to an object in the scene, re-
trieves the normal tableN from the palette of the image on
which the normal map was stored. For each frame, rendering
is subdivided into two phases:

1. the normal lookup tableN is transformed in a shaded
color lookup tableC by applying to each entry ofN the
current lighting model; since the normals inN are en-
coded in object coordinate space, the vectors considered
in this software computation of the illumination model
(e.g., current light direction and view direction) are first
transformed using the inverse of the current modeling
transformation;

2. the surface of the object is rendered, using the classical
graphic pipeline; the lighted and shaded surface is then
computed by mapping the indexed normal texture,
which now indexes a shaded tableC, over the mesh.
This mapping phase is standard and does not introduce
overheads. Many hardware architectures, in fact, give
hardware support for paletted textures, and an explicit
step is provided in the raster pipeline to translate indexes
into RGBA colors.
If a given graphic board lacks this particular support,
performances may slow down considerably. In this case
only, we are forced to perform the index-to-RGBA
mapping “by hand”. The software renderer has in this
case an added burden: for each frame, it has also to
convert on the fly the indexed texture into a standard rgb

c The Eurographics Association and Blackwell Publishers 2000.



Tarini, Cignoni, Rocchini and Scopigno / Real Time Bump Mapping

texture; then the renderer reloads the new shaded texture
from RAM into texture memory, to produce the next
frame (actually, OpenGL provides support to apply the
mappingC directly while reloading the indexed texture).
The overhead in this case is mainly the time necessary
to download the new texture from RAM to the graphics
board texture memory. On slower machines, if the frame
rate drops too low, it is always possible to give up real
time lighting by stopping doing the conversion from
indexed normals to colors (or by using each light map
for some consecutive frames).

The first step takes a very short time, and is performed by
the CPU, while most of the rendering time is taken by the
second one, performed by the graphic hardware (see times
reported in Section 8).
If multiple independent bump-mapped object are contained
in the same scene, the first step must be repeated for each
each of them.

5.1. Computation of color tables

The color tableC is produced by applying to each normaln
in the setN a function f (n)! c. The function can implicitly
take in account other information, typically the light vector
(or a set of light vectors), the light color, the view direction
for the given frame, and so on. Some of those vectors (the
light vector, the view direction) need to be transformed, be-
fore computing the table, in the object coordinate system.
However, all these variables are forced to be constant, for a
given frame, all over the model, and for some of them this
represents an approximation11.
Depending on the modality to assign colors adopted (see
Section 7), the functionf (n) can return: an RGB value, to
be applied directly over the object; an intensity value, to
be blended with the underlying color; an intensity value to-
gether with the RGB values of the specular reflected light.
The function f actually used corresponds to the lighting
model chosen. There is a particularly wide gamut of possi-
bilities, sincef is computed onlysN times (a relatively small
number) and therefore the time spent computingC is anyway
short. Just to cite some examples:

1. ambient factor and Lambertian reflection, using one or
more lights (as in Figure 3);

2. specular reflection component (as in Figure 1), again with
any number of light;

3. environment mapping (as in Figure 5*), where entries in
C are taken directly from an environment map. If the en-
vironment map is very detailed, to produce high quality
results we may be induced to adopt a normal tableN big-
ger than usual;

4. cartoon-like rendering, where we adopt anf function that
maps normals in a very restricted range of colors. This is
different than setting a restricted number of normals in
vector quantization, because in the first case not only the

Figure 5: * An example of environment map is shown; the
environment mapped on the vase mesh is the one contained
in the image above (a photo shot to a Christmas tree ball,
with one of the authors specularly reflected).

shade but also the the shape of uniformly colored zones
changes as light moves;

5. non realistic rendering using any non physical but inter-
esting function from an information visualization point
of view (like the variant of the reflection function in Fig-
ure 6);

6. chrome effect (as in Figure 7);
7. any combination of the above.

5.2. Mipmapping

If the mip-mapping technique must be applied, then the var-
ious levels of Mip-mapping for the quantized normal-map
cannot be computed by the renderer as usual, since that tex-
ture consists of indexes, that cannot be directly averaged.
For mip-mapping purposes, the “average” of 4 adjacent tex-
els t1; : : : t4 (which are indexes to normals inN) must be
defined as the index inN that best approximates the average
of the 4 normalN(t1); : : : N(t4).

c The Eurographics Association and Blackwell Publishers 2000.



Tarini, Cignoni, Rocchini and Scopigno / Real Time Bump Mapping

Figure 6: Examples of bump-mapped objects rendered un-
der a non-realistic specular reflection. In this example the
reflection is computed by doubling the angle between the re-
flected ray and the view direction in the Phong reflection for-
mula.

6. Multiple lighting models

It can be useful to support the use of multiple lighting models
on different parts of the same object. This allows, for exam-
ple, a metallic part and a plastic part to coexist on the same
geometric object. The numberm of lighting models used
should not generally be too high; 2 or 3 is usually enough,
but values of 8 or more are sometime useful and can be dealt
with.

To obtain multiple lighting models each object should
contain information about all them lighting models used,
including values for ambient factor, Phong coefficient, spec-
ular reflection color, diffuse reflection color (if color is not
specified in a color texture), and so on. Each normal in the
texture should include an extra field for thematerial, speci-
fying which lighting model has to be applied to that normal
when the color tableC is evaluated: the same normal now
can in principle appear in the table even up tom times, with
different values for the material.
Actually, thematerialfield is not stored explicitly in the nor-
mal tableN. We designed an approach that sorts the pairs

Figure 7: Examples of bump-mapped objects rendered us-
ing a chrome effects. In this example the color is assigned
by taking into account the reflection of a typical landscape
(brown below, and blue above).

(material,normal), once in the preprocessing phase, in order
of materialand then throws away thematerialfield keeping
record only of the intervals. This is not only to reduce the
space overhead, but also to avoid time overhead (anif-then-
elselike statement) in the computation of each entry of the
color tableC.
Once obtained the tableC, the rest of the rendering algo-
rithm remains the same. Note that managing different mate-
rials does not introduce an overheadper se; a space and time
overhead can be introduced only when a larger set of nor-
malsN become necessary, to give enough precision to the
representation of a set of (material,normal) pairs, which is in
general wider than the pure set of normal.

To further reduce the overheads for adding materials, it is
convenient that the preprocessing normalization of the nor-
mal texture takes in account the material as a forth, discrete
component of the normal vector. For example, look at the
metal and plastic bunny on the top of Figure 8: most of the
normals pointing up are“metal” , while most of those point-
ing down are“not metal” .
In the color quantization phase, thematerial attribute can
be stored in theα component of thergbα pixels of the im-
age representing the normal map. Alternatively, if the color

c The Eurographics Association and Blackwell Publishers 2000.



Tarini, Cignoni, Rocchini and Scopigno / Real Time Bump Mapping

Figure 8: An example of a model containing a metal and a
plastic section (in this case, specular reflection is the only
perceptive difference).

Figure 9: A partially painted wooden bunny is shown. The
top half of the bunny is painted with a transparent shiny
paint (high specular reflection), while the bottom half is
glossy. The wood grain is stored in a color texture, which is
blended with the shade obtained from the normal map. The
normal map uses 2048 normals subdivided in two materials,
and blending is done is a single second pass.

quantization software available lacks the support for the al-
pha component, one can use a different mapping from thenx

ny nz components of each texel of the normal-map intor g b
values of the pixel of the image: the color cube can be sub-
divided in 8 equal sub-cubes, of which 4 are reciprocally not
adjacent, so that each normal space of each material (up to
four) can be mapped in a different, non-adjacent color space
sub-volume.

7. Blending color

The object to be rendered may have defined some informa-
tion on the pictorial detail, or color by short. This detail must
be integrated with the results of view-depedent shading. In
this section we assume that only the simple lighting model
composed of specular and diffuse reflection is evaluated on
the object.
There are at least three sub-techniques that can be adopted,
depending on the need of the current application and the na-
ture of the object rendered. They take respectively three, two

and one rendering passes to integrate the base color and the
results of the lighting model.

7.1. Exact specular reflection

For eachni in the normal table, we can process it by applying
the lighting model and storing the result in the color tableC
as follows. The lambertian shade intensity can be stored in
the αi component of the entryci , while the reflected light
color (already multiplied for the specular factor raised to the
required power) are stored in theri , gi andbi components.
For each object surface parcel having quantized normalni ,
the final color quadruple (rgbα) can be computed at render-
ing time as:

r = ro �αi +(1� ro �αi) � ri

g = go �αi +(1�go �αi) �gi
b = bo �αi +(1�bo �αi) �bi
α = αo

(1)

where(ro;go;bo;αo) is the base color of the object (which,
for example, can be encoded in a standardrgbα texture).
Unfortunately, it is well known that the current standard
OpenGL implementations do not provide blending functions
that are complex enough to compute the formula above in a
single extra pass. Two extra passes are required: one to mul-
tiply the original color withαi and another one to add the
second term of the sum. Needless to say, the last one can be
avoided if no specular reflection is needed.

7.2. Approximate specular reflection

If an approximate specular component is enough, the blend-
ing formula (1) can be replaced by the simpler

r = ro �αi +(1� ro) � ri
:::

(2)

which can be computed in a single extra pass (see an exam-
ple in Figure 9).
The visual result gives an acceptable approximation, espe-
cially when the light position and the view position are not
too far apart one to the other.

7.3. Encoding color as a material attribute

If the object is subdivided into a small number of areas with
uniform base color (like for example most CAD models),
then each color can be codified in a differentmaterial and
both color and shading can be rendered in the same pass
(see Figure 10* for an example). In this case, the final color
(lambertian added to the reflected component) is directly
stored in therigibiαi components of the color entryci , and
no blending is needed at rendering time.
As a positive side effect, each color in the model can be also
associated with a different material attribute (e.g. the spec-
ular reflection factor), or even with different lighting effects
(chrome, environment mapping, etc).

c The Eurographics Association and Blackwell Publishers 2000.



Tarini, Cignoni, Rocchini and Scopigno / Real Time Bump Mapping

Figure 10: * Model of a (faked) greek vase. The naked geometry is visible in the first column (flat shaded above and Gouraud
shaded below). The images in the second column show some examples of single-pass rendered images of the vase enhanced
by a quantized normal map that uses an 8K table and encodes both normal and color (note the different specular component
associated to each of the two color). In the last column two different normal maps are used to add different 3D details: in
the image above the paint is made “thicker”, below some engravings are also added (and the depressed parts are made much
rougher than the rest).

8. Results

The models used within this paper have been obtained by
simplifying some detailed original models with the Jade2
simplification tool3. The corresponding normal-maps have
been obtained withPASTex6, a software which retrieves the
detail lost during simplification (either shape or color) and
encodes it in textures (bump maps of any kind) mapped on
the surface of the simplified object. To support the need
of this particular experimentation, the originalPASTextool
has been extended to support the construction of normal
maps with encoded materials (or to introduce added detail in
the texture construction process, like the greek-like painting
mapped on the vase in Figure 10* and the vase engraving).
Normal-map quantization has been done usingPPMquant
16, which is part of NetPbm, a freeware, multi-platform

toolkit for image format conversion and basic image pro-
cessing.
Finally, rendering of bump mapped object has been per-
formed usingPlyView, a MS Win9x OpenGL renderer that
has been developed by the authors.

The results of an empirical evaluation of our approach are
reported in Table 1. The results reported in the table have
been obtained by using thePlyView renderer running on a
Pentium 300 MHz with an NVIDIA Riva 128 card. The ta-
ble shows, depending on the number of normals used, the
cost of the per-frame overhead (to compute for each frame
the new color paletteC, measured in milliseconds) and the
total frame rate (fps) obtained on the architecture used to
render the 251-faced bunny model. These values have been
evaluated for the different lighting models and effects used.

c The Eurographics Association and Blackwell Publishers 2000.



Tarini, Cignoni, Rocchini and Scopigno / Real Time Bump Mapping

Lambertian Lambertian
& Specular

Number of per-frame per-frame
normals used overh. (msec) fps overh. (msec) fps

256 0.0 16 0.1 16
2048 0.3 16 1.2 15.5
16348 3.9 13 12.5 11

Chrome Environment
Mapping

Number of per-frame per-frame
normals used overh. (msec) fps overh. (msec) fps

256 0.0 16 0.1 16
2048 0.7 16 1.7 15.5
16348 8.6 12 18.3 9.5

Table 1: Empirical evaluation of the proposed approach,
produced on a Pentium 300 MHz with an NVIDIA Riva 128
board.

Note that because of cache coherence the time needed is not
linear with the number of normals.
To give a rough evaluation of the amount of extra rendering
time consumed due to the use of apalettedtexture, consider
that the same object rendered under a static lighting (i.e. us-
ing a precomputed shade-map, that is mapped as a common
color texture) is visualized at 16 fps. Another useful com-
parison is against the original bunny model (visible in the
top-left part of Figure 1), which is a pure geometric mesh
(69K faces) with no textured detail, is rendered at less than
2 fps.

9. Conclusions

We have presented a technique to perform real time bump-
mapping in an efficient and accurate manner. It is simple in
the concept, and easy in the implementation, but despite that
it leads to very good results, allowing a low-cost real-time
rendering of shape detail of an object surface. In comparison
to other real-time bump-mapping techniques, it requires less
rendering passes and results in more accuracy. Moreover, it
provides a notable flexibility and can be easily extended to
achieve easily a wide gamut of interesting possible rendering
effects, including non-standard lighting and shading effects,
rendering of both color and shading in a single pass, shading
under multiple lights, rendering of multiple materials within
an object (each with its own properties, and disposed in ar-
bitrary patterns), specular reflections and so on.

The technique is based on quantization. Quantizing the
normals of an object means, in a sense, to force the quasi-
coplanar parts of it to be merged into larger irregular shaped
flat parts. Therefore, the technique presented can be seen as
a simplification process applied over the object, similar to

the classic geometry-oriented simplification techniques, but
with some important differences:

1. it is done over the texture, not the geometry;
2. resulting artifacts consist in both cases in the percep-

tion of iso-valued sections, but in our case those look
much more natural, because they are in general irregu-
larly shaped;

3. the ratio of the reduction in complexity over the loss in
quality is much better; this is also because even if we use
a reduced number of different normals, their distribution
on the surface can produce many different patterns and
enhance considerably the shape detail perceived.

Moreover, normal quantization can be used in addition to
surface simplification: given a very detailed mesh, it is con-
venient to simplify it, then reproduce the detail lost in a nor-
mal texture, and finally quantize the resulting normal tex-
ture. The final textured mesh is much less expensive to be
rendered (and to be stored) than the original one, while the
appearance remains very similar (see Picture 1).

Obviously, normal quantization reduces considerably ren-
dering costs. A simple, software-based Phong renderer eval-
uates the lighting model (that is, a normal-to-color computa-
tion) for each pixel covered in the rendered image. In the
case of a standard hi-resolution image (say 1:000� 1:000
pixel) covered by the model with a 50% fill rate, roughly
we have thus 500K evaluations. The same applies also to all
bump map renderer that uses per-pixel computations. Sim-
ilarly, if we adopt an approach where the texture is shaded,
than the complexity is linear to the current texture size. As an
example, the texture associated to the bunny model is around
250K texel wide, and therefore a renderer that uses per-texel
lighting computation would require 250K evaluations. With
the presented technique, instead, very good results are ob-
tained with at most a few thousands normal-to-color compu-
tations.

The advantages of the proposed technique, in particular
if compared to similar hardware-oriented solutions, can be
summarized as follows:

1. rendering speed: the per-frame preprocessing requires
few milliseconds, and HW-assisted rendering requires
only one or two extra passes (apart for the base color
one), depending on the technique used. Not only this is
much less than many bump-mapping techniques, but it is
also possible with the a single pass to merge pictorial and
bump detail;

2. flexibility (different lighting models): it is possible to use
different kinds of lighting models, such as: simple Lam-
bertian reflection, specular reflection, or non standard
lighting or shading models, chrome, etc.;

3. flexibility (multiple lighting models): it is possible to ap-
ply different lighting models over different parts of the
sameobject;

4. low space overhead: a quantized normal-map takes only

c The Eurographics Association and Blackwell Publishers 2000.



Tarini, Cignoni, Rocchini and Scopigno / Real Time Bump Mapping

two bytes per texel (or even one, depending on the quan-
tization factor), not to mention that we can include also
the color information in the table (in the case of a discrete
color set);

5. rendering cost distributed between the CPU and the
graphic hardware: during rendering, only the first [much
faster] phase, is performed by the CPU while the stan-
dard graphics pipeline computation are performed by the
graphic subsystem at HW-assisted speeds;

6. easy of implementation: this is due to software reuse, in
particular color quantization.

The method presented has some limitations, that can be
summarized as follows.
A specific hardware features is required to obtain efficient
rendering (i.e. paletted texture support). Note that this is a
standard feature in most graphic hardware, but it is typically
used to - and was originally intended for - save texture ram
space, which is a less and less precious resource. Therefore,
some recent graphic hardware systems do not support this
feature. This could prove a short sighted policy, since palet-
ted textures can be very useful, not only in the way described
in this article, but also in many other real time procedural
texture mapping techniques.
Like many other similar techniques, also the presented one
has some intrinsic limitations or introduces some aliasing:

� both light position and view position are considered to be
constant all over the object. While this disadvantage can-
not be overcome, the visual impact is usually very low;

� the quantization error may introduce some aliasing, which
can be reduced beyond visibility (if the related overhead
in space and time is considered acceptable) by increasing
the number of normals;

� specular reflection is approximated in the single pass ap-
proach, but can be evaluated correctly with an extra ren-
dering pass,or by storing color as material,or by avoiding
either specular reflection or color information.

Acknowledgements
We acknowledge the financial support of the Progetto Fi-
nalizzato “Beni Culturali” of the Italian National Research
Council. Thebunny dataset is courtesy of the Computer
Graphics Group at the Univ. of California at Stanford.

References

1. J. F. Blinn,Simulation of wrinkled surfaces, Computer
Graphics (SIGGRAPH ’78 Proceedings)12 (1978),
no. 3, 286–292.

2. E. Catmull and A.R. Smith,3-D transformations of
images in scanline order, Computer Graphics (SIG-
GRAPH ’80 Proceedings)14 (1980), no. 3, 279–285.

3. A. Ciampalini, P. Cignoni, C. Montani, and
R. Scopigno, Multiresolution decimation based
on global error, The Visual Computer13 (1997), no. 5,
228–246.

4. P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno,
A general method for recovering attribute values on
simplifed meshes, IEEE Visualization ’98, IEEE Press,
1998, pp. 59–66.

5. , Pictorial detail acquisition and patching on
3d objects, Rendering Techniques ’99 (G.W. Larson
ED. Lischinski, ed.), Springer KG, Wien New York,
1999, pp. 119–130.

6. P. Cignoni, C. Montani, C. Rocchini, R. Scopigno, and
M. Tarini, Preserving attribute values on simplified
meshes by re-sampling detail textures, The Visual Com-
puter15 (1999), (to appear).

7. P.E. Debevec, C.J. Taylor, and J. Malik,Modeling
and rendering architecture from photographs: A hybrid
geometry- and image-based approach, SIGGRAPH 96
Conference Proceedings (Holly Rushmeier, ed.), An-
nual Conference Series, ACM SIGGRAPH, Addison
Wesley, August 1996, pp. 11–20.

8. I. Ernst, D. Jackèl, H. Rüsseler, and O. Wittig,
Hardware-supported bump mapping, Computers and
Graphics20 (1996), no. 4, 515–521.

9. C. Everitt, Orthogonal illumination maps, Paper
written for OpenGL.org. Available on the web at:
http://www.opengl.org , 1999.

10. P. A. Fletcher and P. K. Robertson,Interactive shading
for surface and volume visualization on graphics work-
stations, Proceedings of the Visualization ’93 Confer-
ence (San Jose, CA) (Gregory M. Nielson and Dan
Bergeron, eds.), IEEE Computer Society Press, Octo-
ber 1993, pp. 291–299.

11. J. Foley, A. van Dam, S. Feiner, J. Hugues, and
R. Phillips, Introduction to computer graphics, Addi-
son Wesley, 1993.

12. V. Krishnamurthy and M. Levoy,Fitting smooth sur-
faces to dense polygon meshes, Comp. Graph. Proc.,
Annual Conf. Series (Siggraph ’96), ACM Press, ACM
Press, 1996, pp. 313–324.

13. G. Miller, M. Halstead, and M. Clifton,On-the-fly tex-
ture computation for real-time surface shading, IEEE
Computer Graphics & Applications18 (1998), no. 2,
44–58.

14. M. Oliveira and G. Bishop,Relief textures, Tech. Report
TR99-015, University of North Carolina, Department
of Computer Science, Mar. 1999.

15. Mark Peercy, John Airey, and Brian Cabral,Efficient
bump mapping hardware, SIGGRAPH 97 Conference
Proceedings, Annual Conference Series, ACM SIG-
GRAPH, Addison Wesley, August 1997, ISBN 0-
89791-896-7, pp. 303–306.

16. J. Poscanzer, Ppmquant, Part of

c The Eurographics Association and Blackwell Publishers 2000.



Tarini, Cignoni, Rocchini and Scopigno / Real Time Bump Mapping

NetPbm, Avaible on the web at:
http://wuarchive.wustl.edu/graphics/packages/NetPBM ,
1991.

17. H. Rushmeier, F. Bernardini, J. Mittleman, and
G. Taubin,Acquiring input for rendering at appropriate
levels of detail: digitizing a pietá, Eurographics Ren-
dering Workshop 1998 (G. Drettakis and N. Max, eds.),
Springer Wien, June 1998.

18. H. Rushmeier, G. Taubin, and A. Gueziec,Applying
shape from lighting variation to bump map capture,
Eurographics Rendering Workshop 1997 (P. Slusallek
J. Dorsey, ed.), Springer Wien, June 1997, pp. 35–44.

19. John Schlag,Fast embossing effects on raster image
data, Graphics Gems IV (Paul Heckbert, ed.), Aca-
demic Press, Boston, 1994, pp. 433–437.

c The Eurographics Association and Blackwell Publishers 2000.


